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FOREWORD

When the BOHS Technology Committee invited me te prepare a handbook on
statistics for Occupational Hygienists the request seemed, initially, straight forward
enough. However, after some consideration the conviction grew that yet another
book on basic statistics would serve no useful purpose and this has certainly
dictated the contents. The somewhat informal style is intended to involve the
reader/user, inviting participation, both in thinking =about the problems of
occupational hygiene statistics and in tracing the mathematics.

As a result the opening chapters briefly cover the ideas of means, standard
deviations, and confidence 1limits — all available in any statistical text. The
remainder of the book is much more a personal account of some statistics which I
have found to be useful in testing occupational hygiene data taking account of the
distribution from which the sample was drawn, and the outcome which this may have
on some common comparative tests.

Many aspects of statistics are omitted, including the %2 test and other non-
parametric tests. Even the statistics which are included in the book are inevitably
far from complete. Some statistical expressions are introduced without explanation,
(although their context should allow their import to be grasped), and in a chapter
entitled “Sample Sizes” there is no discussion of experimental design. It is perhaps
‘only very fortunate hygienists who have the time to carry out well—designed
-sampling experiments, and it must be presumed that these few have also had the
time to study the statistics of experimental design. But knowing something about
the inaccuracies associated with sample sizes can be no bad thing. The important
question of handling “zero” and “below detectable level” values is also omitted.

: Too many hygienists (no blame attaches to them — it's a fault of the system)

re engaged in one—off “fire—fighting” exercises, or at best salvaging what they can
from a series of measurements. It is to these that the Handbook is mainly aimed,
the author and the BOHS Technology Committee hoping that it will open the way to
a better understanding of the nature of occupational hygiene measurements.

_ Understanding statistics (or any other topic) comes from their application.
. Applying the statistics is today a matter of equipment — no apology is offered for
elying on computers or, at the very least, programmable calculators. The age of
manual calculation, with cross—checks, must surely have passed.

I would 1like to take this opportunity to thank the BOHS Technology
Committee (and my critics) for their continued support while I was preparing this
book. I also thank colleagues and the Director of BCIRA for allowing me to use
illustrative data.

17 Brotherton Avenue, P. Dewell,
Redditch, February 1989.
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1 STATISTICS, NUMBERS AND HANDLING THEM

1.1 Introductory Remarks

Statistics applied to Occupational Hygiene data are concerned with
numbers, frequency of occurrences, concentrations, levels, distributions,
tests of various kinds and so on. They are therefore no different from any
other statistics, and like them they require facilities %to handle numbers and
(at the risk of stating the obvious) they require the numbers themselves. Too
often occupational hygiene “data” consist of a single observation, perhaps as
a gas detector reading. In extreme cases it might not be past imagining to
‘think of thousands of pounds being spent on control measures, based on such
slim evidence. Applying statistics to almost any OH data will soon convince
_you that the (statistical) confidence you cen usually place on your data is
‘meagre in the extreme. How sure are you that the new control system has
reduced the noise? Is the new sampler really any different from the old one
~and is the sampling strategy you've used because it was set up ten years ago
by your predecessor any good at all?

1.2 The Statistics

_ The statistics described in this book can be thought of as the minimum
tool-kit needed by an occupational hygienist to be able to say “I have
analysed the results statistically”. You will find that, to some extent, the
basics of statistics have been assumed — the book is concerned with applving
the wusually available statistics and extending them into areas not often
covered in the more readily available standard texts. Some of the statistics
proposed may not be *“secure” (to use a legal term) but in the absence of
nything better they will at least allow you to move beyond “the average
concentration was x mg/m3” in the interpretation and reporting of your

_ A most important point to remember is to state, when you are reporting
ome results which have been analysed statistically, which statistic has been
sed. This may not be an obvious point, since one assumes that the reader of
our report will probably know what a “mean"” looks like and has at least a
feel for the meaning of standard deviation. This may not be the case if you
28y "applying the t-test to the results from the two instruments it can be
seen that XYZ collects more than ABC". Which t-test? What was the significance
evel? Should you have applied the F- (variance ratio) test first to see if
he variances were similar before proceeding to the t-test? If you did why
idn’t you say so? It becomes even more important to state the statistic used
perhaps even giving references) when you start using some of the more arcane
rocedures now available for analysing your data.



1. Statistics, Numbers and Handling Them

A final observation is that having yet another book on statistics on the
bookshelf, or even reading it, will be of little value unless the statistics
are practised on real, or in their absence, artificial data.

1.3 The Numbers

For sure if you don't have enough data there is no way you can carry out
any sensible statistical analysis. You may get a mean from two results but you
will be hard pressed to say what kind of distribution they come from. At the
other, end of the scale it is now easier than it has ever been to analyse
masses of data which have accumulated in the files for the last n years.
Apparently impossible tasks like tracing changes in the the blood lead
concentrations of a Company’s lead workers over the last ten years is now, or
should be, a matter of a few minutes at most.

Once the statistics have been applied to the numbers is this the end of
it? Perhaps so, too often. But you should remember that you are not a
statistician, but an occupational hygienist. You use statistics only as a tool
of your trade — like another meter. You use them firstly to understand the
nature of your results, and secondly to predict what might happen if the
measurements were to be repeated in the same or similar circumstances or
location. If you do not use your statistical analyses there's not much point

in doing them. At the same time, the application of common sense can save you
from many embarrassments.

1.4 Handling Numbers

In addition to presuming that today's occupational hygienist has a basic
knowledge of statistics it is also presumed that he has a number crunching
machine, either a pocket calculator or access to a computer or even one of his
own (personally or within his group). Pocket calculators will be programmable,
with an adequate number of memories, statistical functions (preferably capable
of being used within a program) and the necessary support functions like log
and ex. Calculators with a single memory and only the four arithmetic
functions can be kept for working out the best buy in the supermerket.

The bewildering number of computers, operating systems and high level
languages available prevents anything other than a very general approach to
their use in occupational hygiene statistics. Perhaps BASIC in one form or
another is the commonest programming language and is very adequate. H & H
Scientific Consultants Ltd have available a number of statistical programs,
originally writtem in BASIC for a Sharp PC1500 pocket computer with
printer/plotter. These programs are also available on BBC cassettes in the
original Sharp BASIC form and Amstrad PCW 3" CF2 discs translated to Mallard
Basic. BOHS has published a BASIC program for microcomputers which tests
monitoring data for the underlying nature of the distribution. There are other
sources of “stats” and “graphics” software, but you should be sure before you
buy that they do what you want. Too many “stats” programs seem to consist of
histograms, pie charts and little else — not much use to a hygienist.

The essential difference between using a calculator and a computer in
occupational hygiene statistics is that the calculator (usually) only
calculates the intermediate tables stepwise, which have to be noted before
further processing cen be done. Also there may be a risk of errors in loading
the program and data into the calculator. On the other hand once a program has
been proved for a computer it will always carry out the required operations in

2



1. Statistics, Numbers and Handling Them

a single pass without any errors once the data have been input and verified
(unless you have requested a perverse operation like asking the program to
calculate the logarithm of a negative number).

You will find in this book that the approach is calculator/computer
biased. This is no accident since the author has his own views on doing
statistics with log tables, pencil, paper and mental arithmetic. He’s tried
this method and a variety of calculators and computers. He concludes that the
right calculator is a powerful tool, and while some computers may be faster
than others, at the practical level all computers are fast.

In Chapter 11 a brief section on logarithms is included. It has been
known for minor puzzlement to arise when first using calculators and computers
to find that the log of 02 is -0:6990, when by using tables it is 1-3010,
read as “bar 1, -3010". Also in Chapter 11 there are brief explanations of
Minimum Variance Unbiased Estimators, and Sturges’ Rule which may be of help.
More commonly used terms can all be found in introductory statistical text
books, and are not given here, which may account for the rather abrupt
introduction of some of the statistics used in the book.

At various points you will find reference to “the degradation of data".
This reflects the fact that some statistics by their nature group data
together for the purpose of carrying out a test, or demonstrating a feature,
usually to simplify the arithmetic or reduce the amount of calculation. Such
grouping obviously destroys the integrity of the individual data peints. There
may, however, be a statistic available which does not destroy this integrity
which will perform essentially the same test. In such cases the statistic
which conforms to the woodwork master's admonition to “keep your wood as long
as you can as long as you can” should be chosen.

A final point, applicable to both calculators and computers. Do not
become bemused by the precision of which they are capable. An error of one in
the last place in a ten—digit display is equivalent to an error of 1 ft in the
distance to the moon. None of your results will probably warrant more than
four significant figures, and too often occupational hygiene deta are little
better than *10%. Now that’s a statistic to conjure with!

1.5 Bibliography

This bibliography is by no means extensive or exclusive. There are many
good modern books on statistics, as well as classical works which have not
been included. New statistics are being developed all the time. It is for this
reason that any book on statistics will necessarily be both out-of-date and
imperfect (not just because of the misprints — a good enough reason for
consulting at least two books to ensure that any errors have been detected and
correctedd.

A browse through the contents and indices of books on the shelves of your
neighbourhood University bookshop or local library will often throw up a
chapter of particular interest to you.

Where no publication date is given it can be assumed that the book is in
a state of constant reprint or update.

References to additional sources are given at the end of each chapter.

CHOU, Y., (1970 Statistical Analysis, Holt, Rinehart and Winston, New
York, N.Y.
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COOKE, D., CRAVEN, A.H., and CLARKE, G.M., (1982) Basic S8tatistical
Computing, Edward Arnold, londen.

DAVIES, 0.L., and GOLDSMITH, P.L., (1984) Statistical Methods in Research
and Production, 4th rev. ed., Longman, lLondon.

GUTTMAN, I., and WILKS, 5.S8., (1965) Introductory Engineering Statistics,
John Wiley, N.Y., N.Y.

HAYSLETT, M.S., and MURPHY, P., (1968) Statistics made Simple, W.H.
Allen, London. (Useful simple introduction.)

KENNEDY, J.B., and NEVILLE, A.M., (1976) Basic Statistical Methods for
Engineers and Scientists, Harper International Edition, Harper & Row Inc., New
York, N.Y. (Has much material not commonly found.>

KING, J.R., (1971) Probability Charts for Decision Making, Industrial
Press Inc., New York., N.Y. (Out of print. Useful for starting the study of
distributions, but some misprints and critical errors in the statistics.>

LEE, J.D., and LEE, T.D., (1982) Statistics and Computer Methods in
BASIC, Van Nostrand Reinhold, Wockingham, Berks.

LEE, J.D., and LEE, T.D., (1982) Statistics and Numerical Methods in
BASIC for Biologists, Van Nostrand Reinhold, Wokingham, Berks. (Both these
books are useful sources of statistics and BASIC routines, but each contains
much of the other. The latter book is out of print.)

MORONEY, M.J., Facts from Figures, Penguin Books, Harmondsworth, Mdsx.
(Useful simple introduction, with full explanatory text rather than theory.)

SNEDECOR, G.W., and COCHRAN, W.G., (1967) Statistical Methods, Iowa State
University Press, Ames, Iowa. (Very full, but readable.)

YULE, G.U., and KENDALL, M.G., (1865) An Introduction tec the Theory of
Statistics, Griffin, London. (Heavy going.)

Statistical tables can be found in many books on statistics. The major
work (which also contains much valuable material on the underlying statistics)
in this category is

PEARSON, E.S., and HARTLEY, H.0., (1976> Biometrika Tables for
Statisticians, Vols. 1 and 2, Charles Griffin for the Biometrika Trustees,
High Wycombe.

Small books of tables are available, one of the more popular being

ROHLF, F.J., and SOKAL, R.S., Statistical Tables, Freeman, San Francisco,
Cal. This boock of tables contains much which has been superseded by
calculators and computers, like tables of five figure logarithms, but it still
containg many other useful tables.

The following have been published by NIOSH, Cincinnati, Ohio, and are
particularly relevant to occupational hygiene. For some comments on NIOSH and
its publications see Section 11.5.

BAR-SHALOM, Y., BUDENAERS, D., SCHAINKER, R., and SEGALL, A., (1975)
Handbook of Statistical Tests for Evaluating Employee Exposure to Air
Contaminants, DHEW Pubn. No. 75-147.

LEIDEL, N.A., and BUSCH, K.A., (1975) Statistical Methods for the

Determination of Noncompliance with Occupational Health Standards, DHEW Pubn.
No. 76-156.
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LEIDEL, N.A., BUSCH, K.A., and CROUSE, W.E., (1975) Exposure Measurement
Action Level and Occupational Environmental Variability, DHEW Pubn. No. 76—
131.

LEIDEL, N.A., BUSCH, K.A., and LYNCH, J.R., (1977) Occupational Exposure
Sampling Strategy Manual, DHEW Pubn. No. 77-173.

NIOSH have also published material on the statistics of chemical
analysis, some of which can be translated from this area and sapplied to
occupational hygiene data.

H & H Scientific Consultants Ltd, P.0. Box MT27, Leeds, LSi7 8QP, can
supply a list of occupational hygiene programs (including statistical programs
mentioned in this book) in BASIC. Abstracts, prepared for the BOHS Technology
Committee, of these programs can be obtained on request from the BOHS Office,
1 St Andrew’s Place, Regent's Park, London, NW1 4LB.

The BOHS Office can also supply (£2.00) Technical Guide Series No. 1,
*Statistical Analysis of Monitoring Data by Microcomputer”, August 1983.
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2 DISTRIBUTIONS

2.1 'Basicldeas

A collection of data gathered from the same population of values will
generally fit some distribution — the “random” numbers which are generated by
your pocket calculator or computer will lie between zero and one, with a

uniform (or rectangular) distribution. This means that any value between O and
1 has an equal chance of occurring.

-
o

ERERUEHCY DF DOCURRENCE

o.c a.1 a.2 Q.3 0.4 0.5 0.6 ¢.? 0.8 0.3 1
CELL ROUNDARIES

Figure 2.1 Uniform distribution of 100 random numbers.

In Fig. 2.1 the theoretical value for 100 results from a uniform distribution
is for ten occurrences per cell, or in other words a probability of 0-1 (10%3,
but variations can, and will, occur. The variations in Fig. 2.1 mey well cause
concern, but using another statistic, the 2 test (one of the meny tests of
randomness and not discussed in this book) you would find that y2 = 6-4 with O
degrees of freedom, suggesting that using this test at least the observed

frequencies of occurrence are in fact quite acceptable for a random sample of
size 100 drawn from a uniform distribution, p = 0-7.

Repeated analytical measurements will be expected to have a mean with a
spread of results about this mean. The spread of results will be normally
distributed, with a high probability of a result occurring at or close to the
mean, and a decreasing probability of a result as the value departs from the
mean. The shape of the probability curve is shown in Fig. 2.2.

The x—axis is in standard deviations, the z-axis is the ordinate of the
normal curve, and P(x) is the area (probability) to the left of x=1 in this
case and Q(x) the area to the right of x=1. It 1is clear that
P(x) + Q(x) = 1, and the area (p) to the left and right of x = 0 is 0-5.

For a full discussion of the theory of the Normal distribution you should
refer to any standard textbook on statistics. You should at least be able to
read and interpret a table of Standard Normal Deviates. Referring to Fig. 2.2

6



2. Distributions
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Figure 2.2 'The Normeal Curve.

you will find that some tables give the value P(x) (i.e. those which start at
0+%) while others give the area from x =0 to x = +x, i.e. 05 - Q(x). The
integral equations in Section 10.2.1 should clear up any residual problems you
may have, while Fig. 2.3 shows, on a single scale, the relation between
cupulative probability and standard deviations.

Normal deviates _

-2 -1 0 1 2 3

! ll i ] A | \ | 1 1 N
2

I

] I 1 1 1 ] 1 1 1 T T ] 1]
5 10 20 3040 5060 70 80 90 95 98 995
Percentage probability
(Cumulative per cent)

Figure 2.3 The Normal Cumulative Probability Scale.

The percentage scale is unequally divided but symmetrical about 50%.
Normal deviates are symmetrical about O and are equal. These scales are used
in plotting both normal and lognormally distributed data. Other scales will be
needed for other distributions.

_ Similarly the t—distribution is described fully in most statistics texts,
and again it is presumed that you can read the t-distribution table, and
understand the nature of degrees of freedom and one- and two-tailed values in
the table. The y2 distribution is not used in this book, but it certainly has
place in occupational hygiene statistics, and has already been mentioned in
passing in this Chapter.

.2 Distributions in Occupational Hygiene

It seems to be an occupational hazard of occupational hygienists to
elieve that their data (airborne concentrations in particular) are never
istributed normally but always lognormally, that is the logarithms of the
data are normally distributed. Some concentrations of styrene are shown in
ig. 2.4 which show a “typical” set of deta which might be thought to be
lognormally distributed, with the peak frequency of occurrence (mode) well to
he left of centre, and a long “tail” of concentrations extending to the
highest values.
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Figure 2.4 Histogram and cumulative curve of styrene concentrations.

It seems to be an occupational hazard of occupational hygienists to
believe that their data (airborne concentrations in particular) are never
distributed normally but always lognormally, that is the logarithms of the
data are normally distributed. Some concentrations of styrene are shown in
Fig. 2.4 which show a *"t{ypical” set of data which might be thought to be
lognormally distributed, with the peak frequency of occurrence (mode) well to
the left of centre, and a long “tail” of concentrations extending to the
highest values,

At the very least the histogram should be plotted on a logarithmic scale
as in Fig. 2.5 if the concentrations are lognormally distributed.

50 fi

»
&

Frequency of otcuvence

20 |-

€0 concentration in ppm

Figure 2.5 Histogram of frequency of occurrence of CO concentrations.

The “typical bell-shaped curve” of the normal curve, Fig. 2.2 (and to
which Fig. 2.5 might be thought an approximation), is often invoked to “show”
that the data are normally distributed, or, if the data are to be plotted on a
logarithmic scale, lognormally distributed. Worse, s plot such as Fig. 2.4,

8



2. Distributions

showing the extended tail of the histogram, is too often said to be
“lognormally distributed” without further ado. On some occasions the
investigator might take the logarithms of such data and replot these to give
the “typical bell-shaped curve” and use this to say that the logged data are
normally distributed, and hence the data are lognormally distributed. It would
seem only prudent to test for the most likely distribution, since, as we will
gee, it might be important to get the right one. Chapter 6 describes a method
of testing experimental data for goodness—of-fit of individual data points,
but for data presented and only available in histogram form (or the derived
cumilative curve) an alternative test must be used, such as the g2 test or the
Kolmogorov-Smirnov test. It must also be clear that the test and choice of
distribution should really be made before the histogram, or single point plot
described in Chapter 6, displaying the results is prepared for the final
report. Mage(l) has some cogent comments on the all-pervasive lognormal
distribution.

It seems that the most popular, or at least most common, distributions
met in occupational hygiene are the normal and lognormal distributions. There
may be others, and the most likely are the Type I and II Extreme Value
Distributions (EVDs). These are, like the lognormal distribution, usually
positively skewed, that is with a tail at the higher wvalues. These tails
extend to even higher values than the lognormal distribution, and take an even
more exaggerated form than Fig. 2.4. They could arise in the following way. Of
the 48 10-minute samples of a compound with a 10-minute STEL which could be
taken in an eight-hour shift, the highest in each hour is recorded. These
eight highest values may well be from an extreme value distribution. Further
daily testing for all the available 10 minute sampling periods would be needed
to show convincingly that the hourly highest concentrations were from either a
Type I or Type II (logl) EVD.

The log EVD bears the same relation to the EVD as does the lognormal to
the normal distribution — the data are logged before plotting. You can perhaps
see that the EVDs could be most useful in working with STELs or the
infrequent, but still likely, occurrence of very high concentrations. The EVDs
- will not be discussed further here, except to note that the probability scale
for the Type I and II EVDs are the same as for Rosin—Rammler distribution
 paper used in particle size analysis. In fact Rosin-Rammler paper can be used
for plotting log EVD data, since particle sizes are plotted on a logarithmic
scale. Rosin-Rammler paper, like probability papers, can be obtained from the
usual suppliers should you like to examine it.

- 2.3 The Lognormal Distribution

There is nothing especially difficult about handling the lognormal
distribution. All the features of the normal distribution are available for
computational purposes and all that is required is to work with the logarithms
of the data. There are, however, some restrictions, and other peculiarities.
Firstly, the lognormal distribution can have no zero or negative data values,
since the logarithm of numbers $0 is undefined. Also the mean and standard
deviation are in the exponentiated form, i.e. they are not, in general,
presented in their logged form, although it is usually much more convenient to
carry out calculations using the logs of the Geometric Mean (GM) and Geometric
Standard Deviation (GSD). This is particularly true when using computers,
since the same program then does for normally and lognormelly distributed
data. Although there is a statistic corresponding to the Coefficient of
Variation of the normal distribution, it is not used very much (and not at all

9
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‘the' GSD serving just as well. The dimensions of the GM are the
same as.those for the AM and arithmetic SD, namely those of the original
“units; ppm, mg/m? etc., but the GSD is dimensionless. Also, just as a standard
deviation of zero means that there is no spread of wvalues about the mean
(because all data values are identical), if the geometric standard deviation
is 1, again all the results are identical <{(although it is difficult to
conceive of anyone wishing to attribute such a data set to a lognormal
distribution?. Perhaps the point to note is that the logarithm of 1, to any

base, is zero, and consequently the geometric standard deviation is always
greater than one,

Numerical relationships between logarithmic and arithmetic parameters of
the lognormal population are given in Section 10.2.8 and the calculation of
the minimm variance unbiased estimates of the arithmetic mean and standard

deviation for a sample drawn from a lognormal distribution is shown in Section
3.5.

Brief accounts of the use of the lognormel distribution can be found in
Leidel and Busch (1975), Leidel et al. (1975) and Leidel et al. (1977), with
more information in King. References to these sources will be found in the
bibliography tc Chapter 1. For the fullest discussion, going far beyond the

needs of hygienists, you would find the major work by Aitchison and Brown
invaluable (Reference 2, Chapter 3).

If you use the normal and lognormal distributions to predict possible
values you will find that the lognormal distribution always predicts values
>0, while the normal distribution predicts values <0 sometimes at comparat-—
ively modest probabilities in Fig., 2.3, say in the 2% to 10% region. This is
sometimes used as an excuse for saying that all occupational hygiene data must
be lognormally distributed, %o avoid such predicted negative concentrations.
You should always be aware that your predictions will not be exact, and the
fewer the number of your data, the less reliable will your predictions be.

2.4 Artificial Samples

It is useful to pgenerate artificial samples for the study of the
statistics described in this book, especially if there is a dearth of real OH
data upon which to practise. Such data can be generated by using the random
number function on a calculator or computer. “Random numbers” on calculators
and computers are obtained using a formula which need not concern us here,
except to note that it requires a *“seed” which governs the series produced,
the same seed will generate the same series. Some computers take their seed
unseen from the internal clock, but others require the seed to be deliberately
sown, otherwise the same series of random numbers is produced each time the
program is run — not much fun and even less use. Also, calculators may only
give random numbers to only a few, perhaps three, decimal places. They all
give numbers in the rahge 0¢x<{1 or 0<x<1 but the range can obviously be
expanded by multiplying by a factor, and moved by adding a constant.

2.4.1 General Method of Generation

Each ef the random numbers from the uniform distribution’ prov1ded by a
calculator or computer can be thought of as probability values® which ‘must be
converted to the appropriate deviate scale. This, for normally and
distributed data, will be the normal deviate scale, or 'scal

of standard
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deviations (see Fig. 2.3), and for EVDs another scale. To simulate some random
data we also need to specify an appropriate mean and standerd deviation.

The random variate is generated by drawing a random number from the range
0<x<1, converting this to the deviate and then to the random variate, perhaps
' representing an airborne concentration. The first conversion can be done using
. the inverse normal integral approximation given in Section 10.2.2 (or using
the Normal table). For normal and lognormal distributions the random number
0.5 would, of course, transform to a deviate of zero. Randomn numbers below 0-5
'will give deviates <0 and random numbers >0-:5 will give deviates >0. So for a
normal distribution and & random number = 0-119 the corresponding deviate, v,
would be =1-18. Interestingly the conversion for EVDs is numerically much
easier to calculate.

The wvariate is obtained from this wvalue and the mean and standard
deviation by substituting in the linearized form of the cumlative
distribution. If, say, the mean = 5 and 8D = 2, in the example above the
random normal variate will be

RNV = v.8D + Mean = -1-18x2 + 6 = 2:64

This procedure is repeated for as many random variates as required,
perhaps 5, if daily shift averages for a week are being simulated, or 48 for a
day’'s 10-minute Short Term Exposures. To generate lognormally distributed data
the equation above becomes

In RNV = v.1ln GSD + In GM

: It was stated earlier that the range of random numbers from computers and
alculators is 0¢x<1, and it may be wise to weed out any random numbers = O,
ince these will compute as —® ND, which is not on. Also three-place numbers
rom some calculators mean that the random concentrations will be “quantized”,
ut I leave it to you to show that 0-001 and 0-999 will give minimum and
wmaximum concentrations, much closer to the mean than, say, 0-000001 or
+999999. Clearly there cannot be concentrations corresponding to values
etween 0-001 and 0002 and so on, when using uniform random numbers generated
n such a calculator followed by conversion to random normal deviates and
ariates using the polynomial approximation and linear equation.

This approach is quite general for any distribution, and by using the
ppropriate conversion from random number to random deviate a seguence of
andom values derived from a particular distribution may be generated. An
lternative and more rapid method(2.3) of generating simulated normally or
gnormally distributed data is given in Section 10.2.9.

.2 A Random Lognormal “Sample”

It will be clear that a computer is ideal for such simulation. Fig <.1
was derived from a computer generated series of one hundred random oumbers
(HISTOGRAMS(4)). Fig 2.6, (using RND LNOR CONCS(4)) shows the output from a
harp PC1500 for 136 random “measurements” (as one-day shift average
oncentrations? see Section 5.3.2) for a lognormally distributed data set with
M = 1-608 mg/m? and GSD = 2-0. The similarity to typical outputs from
ontinuous recording instruments can be seen. Also random variates can be
reated using any of the statistics described in this book. For example the
rintout gives the various means and standard deviations for the specified
istribution and for the random sample drawn from it. It is not necessary to
lead poverty of real occupational hygiene data in order to become proficient
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in the application of statistics when artificial data are so easily generated.

136 SANPLES FRON R LOGHORMAL
DISTRIBUTION, HITH POPn, GH= ), 088
AND POPn, B5D= 2
POPn, ARITH NEAN~ 2.845
P0Pn, VAR, 2.529

PPN

SANPLE GEON DEAN 1,697
SANPLE BEQN Std fevn ].78
SAMPLE ARJTH NEAN 2.9824
SAHPLE ARITH UARIANCE @.824
MUl ARIIH NEAK 2,088

AUU QRITH VARIANCE 1.GB3

6H

Figure 2.6 Random Lognormal Concentrations.
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3 MEANS AND STANDARD DEVIATIONS

3.1 Means and Spread of Results

This is an area in which it is assumed you already have a working
* knowledge, and what follows has been included for the sake of completeness and
revision.

3.2 Arithmetic Mean
In the equation
¥ = Zx/n [3.1]

% is the arithmetic mean, AM, of the n items of data. It is also the best
estimate we have of the population mean, p, from which the n items were drawn
as a sample, if the population is normally distributed. The case of the best
estimate of the arithmetic mean for the lognormal distribution will be covered
more fully below in Section 3.5.

3.3 Arithmetic Standard Deviation

The equations

5 = J[3(x — %x32/(n - 1I1 {3.2al]
= JI{(Zx2 — nX2)/(n - 1)1} {3.2b]
= SU(Tx2 - (ExI2/n)/{n - D1 £3.2c]

are three forms which can be used to calculate the estimate of the population
standard deviation s from the sample data. Equation [3.2al is least prone to
the generation of rounding errors in the calculation of s and can easily be
ncorporated into computer programs by first calculating the arithmetic mean
from [3.11. This means that two passes of the data are used. Cooke et al.()
give a BASIC routine which calculates s with one pass of the data as it is
ntered, although it is slower than computing [3.2a] because of the additional
omputing called for. Pocket calculators use a single entry of the data and
you will find memories containing Ix and Zx? as well as n, with the AM
alculated from [3.1]1 and the SD from [3.2cl, directly from the memory
contents, leading to the potential for arithmetic errors. While many
calculators and computers have an adequate number of significant figures, some
may only work to seven, and the use of routines which obviate the risk of
errors is to be preferred.

The standard deviation is the most appropriate estimete of the spread of
:the population from which the sample data values were drawn. Other measures,
such as the range (of the sample), give less information, and the labour
‘involved in calculating the SD is these days little more than finding the
extreme values (by inspection). although its expectation increases with
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3. Means and Standard Deviations

increasing sample size.

A close relative of the standard deviation is the estimate of the
population variance, s2. The standard deviation for the whole population
(which we will rarely have) is o, and the population variance is o2 in
which n-1 in [3.2]1 is replaced by n.

As with the mean, these statistics are most easily interpreted for data
which are normally distributed, or more strictly, to data drawn from a
normally distributed population. Again the best estimator for the (arithmetic)
variance of a lognormally distributed population will be given below.

3.4 Geometric Mean and Geometric Standard Deviation

These statistics are derived from using the natural <(or comnon)
logarithms in £3.1) and [3.2].

y = 1ln x [3.3]
¥ =2Z(n x)/n = Zy/n {3.4]
g =JIZ(y — ¥2/(n - 1)1 [3.5al

= S(Zy2 — ny2)/(n - 121 £3.5b]

= Jl(Zy2 - (Zyy2/md/(n - 131 [3.5c]
Geometric Mean (GM) = exp(®§) 13.61
Geometric 8D (GSD) = exp(g) [3.71

Thus the method of calculating the GM is similar to that for calculating
the AM but for the GM the logarithms of the data are first used to calculate
the mean (ln data), which is then exponentiated(t), and similarly for the GSD.
The same reasoning applies to ¢ and g and the variance of the logged(i) data.

(1) See Bection 11.2

The arithmetic mean and SD of the data are still = % (= 3x + n) and s
(from [3.11 and [3.21), and the best estimates of the ln GM and ln GSD of the
parent population (assuming that it is lognormally distributed) are ¥ and g.
The variance, g2, is also the best estimator for the logged data. On the other
hand % and s are not the best estimators of the arithmetic mean and standard
deviation of the parent (lognormally distributed) population from which the
sample of n was drawn.

In occupational hygiene it is often the case that samples are taken from
a lognormally distributed population <(although this should be tested as
described in Chapter 6). The problem cen be visualised in the practical case
when ten short term “samples”, of 10 minute duration, are taken at random dur-—
ing a nominal length (480 minute) day. From this sample of 10 we want to make
the best estimate of the arithmetic mean of the daily exposure. If the data
are normally distributed the arithmetic mean is the best estimate for the
shift average, but if they are lognormally distributed an alternative measure
of the average should be used. The best estimate of the population arithmetic
mean of a lognormally distributed sample is o.

So from the data an estimate of, say, the time—weighted average (TWA) or
arithmetic mean of the population is made, either by assuming that the sample
arithmetic mean is the value required or by evaluating '

o = exp(¥ + ®B(1ln GSDY2)




3. Means and Standard Deviations

1though this is only true for the population. It is unsafe to apply this
srocedure, or to use the sample arithmetic mean, for samples of small size. A
hird method of calculating the TWA is available, using the minimum variance
biased estimator.

REinimum Variance Unbiased Estimators

Minimum variance unbiased estimators are statistics, such as the mean and
-tandard deviation, calculated from the available sample data and which use a
rm of calculation which ensures that they are estimators of the statistic
r the population from which the sample is drawn, and have minimum variance
d minimum bias. They are discussed briefly in Section 11.3.

Aitchison and Brown(2), and Bar-Shalom et al(3 give a method of
lculating the minimum variance unbiased (MVUD astimator, a, for the
pulation arithmetic mean o (although there are unfortunate misprints in
h). Aitchison and Brown also give a method of calculating b2, the MVU
timator for B2, the population arithmetic varisnce. In each case these
timators are the best. In occupational hygiene it will be obviocus that you
e really interested in the AM of the population (the full working day?) from
iich your n short-term samples were taken. The MVU estimators are what you
nt, not the AM or SD of the data. Bar-Shalom also gives three nomograms for
;e solution of @ for n = 3,4, n=5,6 and n * 7. Omitting the derivation
ven by Aitchison and Brown, a function yn(t) is defined by the power series

- n—1 (n—1)3 u2 (n—1)>5 u?
¥ =1+ SEut ey aT o ety 3t o (3.8
By making u = ¥gy? (gy? = variance of logged data) the power series can

.evaluated, and is used to calculate a, the MVU estimate of the population
ithmetic mean, o, from

a = exp(¥).yn(kgy2) [3.91

Perhaps of lesser interest is the estimate of the arithmetic variance,
of the lognormally distributed population, which is evaluated by
nerating two yn(u) series, in which the first u = 2gy2,

n—a

id in the second u = =1 .gy2 to give
¥nCw = [ynl2gy2d — ynl gjf gy2)1 £3.101

The values of these two y series are first calculated to give xn(i) which
“then used to evaluate

b2 = exp(2¥).gn(ud [3.111

Equations [3.8] to [3.111 appear formidable, but L3.81 and [3.9] can be
valuated to any desired precision in no more than five lines of BASIC, or on
cprimitive 72 step programmeble pocket calculator. The equations for the
ariance, [3.10]1 and [3.111, need an extra line of BASIC, and two passes on
hHe calculator. The mathematics are thus no obstacle to calculating the
correct estimates for the population arithmetic mean and variance of
ognormally distributed data. That is if you have already shown that the data
re indeed from this distribution, by using the methods described in
Chapter 6.

In Section 5.3.2 you will find that MVU estimates of the population mean
and standard deviation of a set of data are quite close to the sample mean and
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3. Means and Standard Deviations

standard deviation. This is not always the case. A greater difference was
found in 57 data polnts which were lognormally distributed. The sample mean
and standard deviation were 112 and 154 respectively, while the MVU estimates
for the mean and standard deviation for the population were 139 and 353. Buch
large differences are apparently not uncommon, and mey have significant
effects on consequent decisions or subsequent statistics. It is, on the whole,
better to use the MVU estimates of the arithmetic parameters for the
population rather than the sample arithmetic mean and standard deviation.
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ONFIDENCE LIMITS OF MEANS

How Sure Are You?

In Chapter 3 we have seen how to calculate the mean and spread (standard
iation) of the sample and estimate these parameters for the population from
the sample was drawn. The distinction has to be made that while the
culated mean of the data values is numerically exact, this value is only an
mate of the mean of the population.

The use of the word “estimate” immediately suggests some uncertainty in
alculated results. This uncertainty can be calculated from the data we
e, and a knowledge of the t-distribution. The derivation and applications
e t-distribution are well described in any good basic book on statistics.
distribution is similar to the normal distribution, but it invokes a new
1, the “degrees of freedom” (DF) associated with the data. When the degrees
freedom are infinite the distribution is identical to the normal
ibution, but as the number of DF decreases the values corresponding to
eviations increase for the same tabulated probabilities. You can think of
s effect as a reflection of increasing uncertainty as the number in the
ble gets smaller.

onfidence Limits

The uncertainty of the estimate of the mean for the population can be
sed as “with 90% confidence (or some other level) the mean of the
ation lies between these two values”. This is the same as saying that if
re to sample from the population to give 100 estimates of the mean, 80 of
‘would lie between the two values, or confidence limits. Sometimes we may
_to say that “the mean, with 95% confidence (or some other level) will not
ed (or be less than) one value (or another)”.

.In essence this means that if we take 100 (repeat) sets of samples from
same population (5 daily personal dust concentration measurements for each
0 weeks from the possible lifetime of the operative) the means of 90% of
e (weekly) sets will lie within the 90% confidence limits either side of
frue mean for the population. The means of 5% of the sets will be below
lower limit, and 5% above the higher. It is most unlikely that we could
mble daily for 100 weeks. Instead from one week's sampling we must calculate
stimate of the mean dust concentration, and use the same data to estimate
confidence limits within which the true mean will lie.

‘For this sample of approximately normally distributed data

.0-192, 0-401, 0-505, 0-612, 0-645, 0-654, 0-666, 1-132

(arithmetic) mean is 0-601, which is the estimate of the mean of the
lation from which the sample was drawn. With 90% confidence the population
lies between 0:420 and 0-781. Or with 95% confidence the mean will not
ed 0-781, nor be less than 0-420. Clearly there is some lack of confidence
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4. Confidence Limits of Means

in the estimate, since the mean could be greater than 0-781, or less than
0-420, but it seems fair to suggest this is unlikely.

Confusion can sometimes arise in the interpretation of the *“80%" and
“g5%" used above — how do these two levels give the same results? The
explanation lies in the fact that they represent the same confidence limits,
but while the first is "two—tailed” the second is “one-tailed”. That is the
90% confidence (between) level is looking at the central symmetrical 90% of
the area under the t-distribution curve (which it has been said is of similar
form to the normal distribution curve). The 95% (not exceeding or not less
than) level is the same (90%) area plus the 5% of the area at one or other of
the ends, see Fig. 4.1.

In fact you will find the table is laid out not as percentage confidence
levels, bult as percentage significance levels, and

% confidence = 100 - % significance.

The significance is commonly denoted by o, which is the sum of the areas below
the two tails. The value of t in the table may correspond to the significance
o or of2, and you should make sure that you use the correct percentage value.
So when locking up the required value of t you will first have to decide
whether your confidence level is one- (/2) or two—tailed (o and then convert
the confidence to significance.

K2 o2

1 i |
-t -3 -2 -1 B 1 2 3t

Figure 4.1 The t-distribution curve.

As an alternative to using tables you could calculate t for a given
confidence level and DF on a computer using the formula in Section 10.2.4.

4.3 Calculation of Confidence Limits

The mean, standard deviation and sample size n are needed to calculate
the confidence limits of the mean, together with the appropriate tabulated
value of t.

First the standard error (of the mean), sz, is celculated from the
estimate of the standard deviation and the number in the sample -
sz = s//n o141

The value of t is then looked up in the t table, for the chosen confi-

dence level and for n-1 degrees of freedom. The standard error iS'@ﬁltiplied

i8




4, Confildence Limits of Means

by t, and this value is added and subtracted from the mean to give the
confidence limits.

Confidence limits = % * t.ssz i4.2al

=% * t.s/fn [4.2b]

For the data above and choosing a two—tailed confidence level of 90%

(giving a one-tailed confidence level of 95%, which translates to a signifi-

cance of 5%) with 8-1 = 7 DF, we find in the table t = 1-895, and equation

[4.2] gives the values 0:601 * 0-180 = 0-420 and 0-781, accommodating rounding
errors to three decimal places.

Other confidence levels may be chosen, such as 80% (two—tailed) or 99%
(one-tailed). A lower confidence level merely brings the limits closer to the
mean, and higher confidence levels widen the interval. The mean, with 80%
confidence, lies between 0-466 and 0:736 (t = 1:415). The mean will, with 99%
confidence, not be less than 0-315 nor exceed 0:886 (t = 2:998). Or, if you
1ike, the mean, with 98% confidence, will lie between 0-315 and 0-886.

It is useful to do a few practice runs with dummy data until you are
confident (sorry) in the calculation of confidence limits.

4.4 Confidence Limits for Lognormally Distributed Data

Equations [4.1} and [4.2] are applicable to the logarithms of lognormelly
distributed data.

Standard error of the (log) mean sy = g/Jn [4.3al
Logs of confidence limits = ¥ * t.sy [4.4a]
=% *+ t.g/dn [4.4b]

Translated into Geometric Means and Geometric Standard Deviations these
become, by analogy with [4.2a] and [4.2b]

Confidence limits = GM x or + exp(sy)tt [4.5al

= GM x or + G8Dr(t//m> 14.5b]

The symbol t is “computerese” for “raised to the power of”.

Looking at the sets of equations [4.41 and [4.5] it is clear that in
plain number handling terms [4.4bl is easier (and on a computer faster) to
compute, followed by a final exponentiation to get the two numerical limits,
and is to be preferred to evaluating [4.5]. For the data listed above the
geometric mean is 0-543 and the geometric standard deviation is 1:669. The 95%
confidence limits are 0-385 and 0:766. You will see that these are not
symmetrical (arithmetically) about the GM, whereas the limits about the AM
(4.3 above) were symmetrical. The confidence limits of the logged data are, of
course, symmetrical about ¥.

4.5 Other Confidence Limits

Clearly there are confidence limits which can be applied to the standard
(and geometric) deviations. These variables are distributed according to the
%2 distribution. These confidence limits are generally considered either to be
of only marginal interest or numerically too difficult to handle and are only
discussed in a few text books (and this isn’t one of them). It may be that,
with the wide availability of computers to handle the pumber crunching, these
_confidence limits might become more accessible, perhaps leading to a better
understanding of why measured occupational hygiene data are distributed the
way they are.
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This illustrates that there are, on the one hand, more statistics
available for hygienists if they wish to apply them. On the other hand the
mathematics of calculating confidence limits for the MVU estimators for the
arithmetic mean and standard deviation of lognormally distributed data
(Section 3.6) have not yet been worked out, and you should not be tempted to
substitute these MVU values in the equations above; you will obviously get a
pair of values, but they will be difficult to justify statistically. There is
more on confidence limits in Chapters € and 7.

4.6 Another Example — Respirable Quartz Concentrations

This example and the one given above are, in fact, taken from data used

in Chapter 7, so that when you come across a computer output there such as
WITH 90% CONF. MEAN LIES BETWEEN 8.45 AND 14.69

you will know where it comes from and to which mean (arithmetic or geometried
the confidence limits apply, although for the purposes of illustration the
confidence limits of both distributions will be worked out here. In general
only one or other would be recorded, or output, although both would be
available within a computer with the appropriate program installed.

The data (in mg/m3) are

0-036 0-035 0-129 0-079
logio ~1-4437 -1-4559 -0-8894 -1-1024

The problem is to find the 95% confidence limits of the arithmetic and
geometric means. There are ¢(n - 1) degrees of freedom, n = 4, so DF = 3, for
which the t-distribution table gives t = 3-182, which will be used in the
table below.

The quartz concentrations give the following table, for the arithmetic and
logarithmic data, using the equations in the last column.

Arithmetic Logarithmic Antilogs From Egn
Mean 0-0698 -1-2229 0-0599 (GM) [3.11
451M) 0-0445 0-2762 1-8887 (GBD) [3.2al
S5td Error 0:0223 0-1381 1-4436 (1018E> £4.11
t.SE 0-0708 0-4394
Mean + £t.SE 0-1406 ~0-7835 0-1646 (Upper 95% CL)> 14.2al
Mean - t.SE -0-0011 -1-6622 0-0218 (Lower 95% CL) [4.2al

Again it will be seen that although the confidence limits for the
arithmetic and logarithmic data are symmetrical about their respective means,
the numerical limits about the geometric mean are not. The only useful thing
about equations [4.5al and [4.5b] is that they warn us that the limits are a
multiple or quotient of the geometric mean of a lognormally distributed set of
data. It will also be seen that a negative concentration of -0-:0011 mg/m? is
predicted as the lower confidence 1limit for the normal A <(arithmetic)
distribution! B

If this should be thought an embarrassment some 1evel of confidence lower
than 95% could be chosen, say 80%, for which, with 3 DF, t =1 638..The values
of t.SE for the arithmetic and logarithmic data now become 0 036 '
From these and the means we get the arithmetic 80% co' e
0-0698 + 0-0365 = 01062 and 0-0333 mg/m3. At least there
concentration and the limits are closer to the mean, but 't
be paid for selecting a not very high level of confidence
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4. Confidence Limits of Means

s for the geometric mean are 0-1008 and 0-0356 mg/m3, and similar

nts apply.

The 95% confidence limits of the geometric mean are 0-0218 and 0-1646",

the equivalent of saying that, with 97-5% confidence, the geometric mean of
population from which this sample of four concentrations was drawn will

exceed 0+1646 mg/m3, nor, with the same (97-5%) confidence will it be less

.0218, these being the one—tailed distribution of t.

t might be thought that for a geometric mesn of 0-0599 these are wide
ts within which we can expect to find the true population geometric mean,
deed they are. But that is the nature of the lognormal distribution (and
ognormally distributed occupational hygiene data). We could make the
closer to the mean by choosing a smeller confidence level. For a
nce level of 80%, or o« = 0+:2, t3 is found from the t—distribution table
'1.638. Working through the table above again we find that the 80%
ence limits for the geometrical mean are now 0-0355 and 0-1008,
ainly closer to 0-0599, and perhaps of more comfort than the 95%
ence limits, but this has been achieved at the cost of expecting 20 out
sample means to be outside these limits, instead of only 5 out of 100
the 95% level (were we to have the time to sample four days per week for
eeks in order to estimate the operative's lifetime weekly mean exposure
his way). We must accept a trade-off between high confidence levels and
imits on one hand and low confidence and tighter limits on the other.

The wide confidence limits of these quite typical occupational hygiene
should remind us of how unlike they can be to data derived under
ory conditions. An analyst faced with such data from repeat
rements would conclude that he did not have an analytical method. But
ational hygienists must live with such results, or choose to use rather
‘confidence levels than might be more usual. The one thing they cannot do
o ignore the spread of their results.
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5 SAMPLE SIZES

5.1 Some of the Problems

The question “What size of sample do I need?” is easily asked, and not at
all easy to answer. In fact without more qualification or additional
information it is impossible. One qualification might be “in order to say,
with 90% confidence, that the mean of my sample would not be more than 10% in
error of the true mean”. The additional information might be in the form of a
statement concerning the sample itself and the population from which it is to
be drawn, or in the form of preliminary data, or accumulated experience from
previous similar measurements.

Even with this additional information available it is almost inevitable
that the proposed sample size will be so large that the occupational hygienist
will be hard pressed to justify the cost of implementing the sampling
programme. This is unfortunate but both the hygienist and his management or
client must be aware that either the costs must be met or the confidence in
the results will be significantly reduced. It seems that in the real world
little can be done about this state of affairs, except be aware of it.

The problem arises from the nature of so many occupational hygiene
measurements. Even a passing acquaintance with repeat or simultaneous
measurements of nominally the same condition will have convinced you that OH
measurements are, in general, not very reproducible. If you have not done any
such measurements you should, since your previous experience of repeatedly
measuring the length of a piece of string and working out the mean and
standard deviation (seriously) will be of no help to you in finding out how
variable occupational hygiene measurements can be.

5.2 The Single Sample

It is unfortunate that the word “sample” is almost always used for a
single measurement of a sound level, concentration of welding fume <{(further
perhaps compounded by calling it the “dose”), or blood lead level. Even if the
“sample” is taken over a full shift it is simply a measure of the conditions
at the time the measurement was made. It will be obvious from Chapter 3
(standard deviations) that from only one measurement there is no way you can
get any idea of what the spread of all possible measurements or. of what
another measurement might be, since in calculating the estimate! of the
population standard deviation you will have a dencminator of zeroiQQﬁ -14 when
n = 1) in Equation ([3.2). Division by zero gives ® in mathematic and on
computers and calculators results in overflow or errors (or both) £

Nor can you calculate a coefficient of variation for phé;sq
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5. Sample Sizes

ample Size for Two Cases

‘The two methods of finding the required sample size given below are by no
s the only ones available. They do, however, answer two properly
Jlated questions, unlike the incomplete one posed at the start of this
er. Sampling size is discussed in many good statistics texts and in some

th by Yates),

‘Coefficient of Variation Known, Error Limit Chosen

~1f the objective of the planned sampling programme is to estimate the
lation mean, whether arithmetic or geometric, for the appropriately
tributed data, the prior knowledge needed is the estimate of the standard
ation from a preliminary survey or previous experience in similar
stances.

The statistic t is given by the equation

t = 2 - XU (5.11
Sx

‘where p = population mean

X = sample mean and
_ sx = standard error of the mean.
But sz = s//n,

where s = estimate of population standard deviation and

=
It

sample size.

If we express || ~ %l as a percentage of the population mean then

E=lP;J x 100 {5.21

where E is the percentage error.

Ve also have the coefficient of variation,

_ V=s/p [5.31
‘From these equations

n=<t.WE?2 [5.41

V is estimated from earlier data, as mentioned above, t is read from the
> of t-distribution wvalues, for some chosen level of confidence for
grees of freedom (DF), and E is a level of (acceptable or chosen) error. The
of DF = o assumes that the population is infinite, that is the number of
ble one—day samples which could be taken in the workplace could stretch
lifetime. Since a year would accumulate about 200 days, or for 10-minute
t term samples, a possible month’s samples would be nearly 1000 (48
les/day, 5 days/week and 4 weeks/month) the approximation of @ DF is
eptable.

Examples and Discussion

] For a normal distribution with p = 100 mg/m3 and o = 30 mg/m?, which have
n derived from experience or estimated from a short sampling exercise, and
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choosing an error limit of 10%, and 95% confidence we select DF = o, for which
t = 1-960.

(1-960.30/100/0-1>2
34-57, or 35 to next integer.

=]
| I

That is to say, in order to estimete the population mean of the
concentrations, so that with 95% confidence the estimate would be within 10%
of the “true” mean we would need to take 35 full shift (or 10-minute STEs)
“samples”.

This applies to normally distributed data. What if you suspect or know
that the data are lognormally distributed? The Central Limit Theorem (see any
good text book) tells us that the distribution of means is normal even for
data samples which are lognormally distributed. As a consequence the same
formala can be used to calculate the required sample size for lognormally
distributed data,

In Section 4.6 the minimum variance unbiased (MVU) estimators for the
population arithmetic mean and standard deviation of lognormally distributed
data were discussed. The question arises “should these MVU estimators be used
for such data?” since the Central Limit Theorem says we will not be interested
in the population GM. The answer cannot be found in text books, but it would
probably be valid, or perhaps be a more secure guess to use the MVU estimates,
than to use the raw sample arithmetic mean and particularly the sample
standard deviation from a trial sample (which can be very different from the
MVU arithmetic standard deviation), even though the confidence limits for the
MVU estimators cannot be calculated exactly.

The following data for shift average respirable dust concentrations (in
mg/m3) measured over eight days for a man always doing the seme jeob in a
foundry are lognormally distributed,

1-27, 1-33, 1-36, 1-49, 1-67, 1-75, 1-80, 2-48

For how many days should samplers be deployed to estimate the man’'s true
mean exposure within 10% error limits with 90% confidence?

GM of data = 1:608 mg/m3 (Best estimate of GM for population)

G8D of data 1'244 (Best estimate of GSD for population)

AM  of data = 1:644 nmg/m3

ASD of data = 0-392 mg/m3

Minimum Variance Unbiased AM
population)

Minimaum Variance Unbiased SD
population)

“CV” {(from MVU estimators) = 0-219
From [5.41 n = (1-645.0:219/0-1)2
12-96 = 13

1-642 mg/m3 (Best estimate of AM for

0-359mg/m3 (Best estimate of ASD for

il

i

If the sample CV were used the required sample number is 16. Generally the MVU
estimators, especially the variance, are such that they will give much greater
sample sizes than will the raw sample CV.

It should be noted that although this suggests that 13 shift “samples”
need to be taken to get an estimate of the man’s mean respirable dust exposure
with 90% confidence within 10% limits, the real case will probably be even
worse. If we were to use the logarithmic data (despite what the Central Limit
Theorem tells us) the GSD of 1:2 is not very high, and a value of 2 or even
more might be expected in many instances. Even so a GSD of 1-244 suggests a
sample size of 58 for us to have 90% confidence that the log of the sample
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5. Sample Sizes

smetric mean will be within *10% of the true log GM (since in this case we
ﬁlooking at the lognormal distribution), which may cause some surprise.

‘From these two examples it must be clear that the arithmetic mean (for
population) of exposure of an operative can only be estimeted with any
ible confidence and with reasonable error limits by making an adequate
srge) number of measurements. If you and your management are determined to
erious about making reliable estimates of long term (year to lifetime)
upational hygiene exposures you had best abandon the idea that the single
_shift sample is telling you very much, other than allowing you to state
our report that “on the day when the measurement wes made the concentra-
n was ..”. Any interpretation beyond this, such as ascribing this value to
weekly, yearly or lifetime exposure, or even comparing it with an exposure
t. (EL), assuming this itself has been derived sensibly, would seem to to
ather more than risky.

“The only alternative to large sample sizes is to accept lower confidence
higher error limits.

The “NIOSH Method”

If the type of distribution and the relevant standard deviation are not
, and it seems imprudent to meke assumptions for these, an alternative is
propose that (at least) one result in the sample to be taken from a
lation should be in the top T%, with C% confidence. In this case the
lation size N is known, as are T% and C% (or at least they can be
cided), and from these data the sample size n can be calculated.

The Association of T%, C%, Nandn

-~ Once again you will be surprised at the relatively large number in your
le for reascnable values of T% and C%, particularly if the population size
not large. This approach is given in Leidel et al.® and by Crosby(3). The
pﬁption is that the population is homogeneous, a group of workers exposed
he same conditions, doing the same job, and without any distinguishable
erences in the way they work or are exposed. Another example of a homo-
us population would be the 48 ten—minute samples which can be taken
ng a full 8h working shift using static or personal samplers, again
uming that the exposure is, so far as can be judged, uniform throughout the

As an aside, although this (and any other) method will tell you how meny
les to take during the day, it will not tell you when to take them. This,
+» needs to be decided, probably best by wusing a sampling timetable
erated using random numbers.

Tables of sample sizes needed to ensure that one result will be in the
102 or 20% (T%) with 90% or 95% confidence (C%) are given in the
ences quoted. These values were obtained from the following formulae, but
he sake of a tidy presentation in the reference sources the results have
rounded.

N = group size

n = gample size

1 - o = confidence (C%/100)

proportion of group (v = top T%/100)
No = N.x

A
I
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5. Sample Sizes

For a population of infinite size (N = o

n = 108 o

log (1-<> t5.51

This sets an upper sample size limit for given values of T% and C%. For
groups of size N (N<o),

o= NN (N-n)!
(N-No-n) 1 p

pN-Mo
TN

n

£5.6]

£5.71

In either form the confidence (1 - o) is easily calculated on a pocket
calculator with factorial or permutation functions, or on a microcomputer
using the approximation given in Section 10.2.7. The calculation of sample
sizes (n) for given group sizes (N), confidence (1 — o) and top fraction (1)
is rather more tedious to set up as an iterative routine but is entirely
practicable with care.

Sample sizes have been recalculated for group sizes up to 50 using the
program SAMCON(4) and although the new values are very similar to those given
by Leidel, there are some minor differences which are usually advantageous
(smaller sample sizes) to the hygienist. These recalculated values are shown
in Tables 5.1-4, page 28.

An examination of the tables will show some apparent anomalies. For
example, in Table 5.1, for a group of size 32 or 33 a sample size of 14 is
proposed, but for a group size of 28 a sample size of 15 is needed. The
discontinuities and apparent anomalies, which have been smoothed out in the
NIOSH tables, are due to the influence of No (= N.t) in the equations, since
No must be an integer (the top 10% of a group size of 25 men = 3 men, not 2:5
men). SAMCON ocutputs either the % confidence, the required sample size or the
data for Tables 5.1-5.4 when the other parameters in equation [5.6] have been
input. Perhaps this is a case where you should report which statistic wes used
— the “NIOSH tables” or the calculated values of sample size.

5.4.2 Examples and Consequences

It frequently happens that the sample size used by a hygienist falls far
short of that which should be used due to shortage of staff, equipment or time
(money in all cases), but using equations [5.51-[5.7] will show you (and
perhaps your management) what 1little confidence there may be in the results
obtained from too brief a survey.

For example if only 4 men can be sampled from a homogeneous group of 16,
the confidence will be only 45% that the exposure of one of the four will be
in the top 10% of the concentrations to which all 16 men are exposed (10% of
16 = 2). An alternative interpretation would be that the confidence is 73%
that one of the four would be in the top 20% (20% of 16 = 4). For a group of
16 the sample sizes suggested by NIOSH are 12 and 8 to be 90% confident that
one of the 12 or 8 should be in the the top 10% or 20% respectively. The
corresponding sample sizes from Tables 5.1 and 5.3 are 11 and 7, both a small,
but helpful, advantage over the sample sizes from the NIOSH tables, although
still illustrating the need to take an adequate number of samples if any
reasonable level of confidence is to be placed in the results.
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5. Sample Sizes

Even a casual examination of these tables and earlier sections in this
apter will show that too many sampling exercises in occupational hygiene are
obably carried out with sample sizes which are far too small. Although this
be the general practice it is still helpful to understand why this is so,
en allowing for the difficulty in identifying, let alone being able to work
th, homogeneous groups of workers. The hygienist should be prepared to
spose to management or client that it would seem only prudent (in the legal
nse) to plan and implement adequate sampling surveys if sufficient data are
" be collected in order that sound decisions on the expenditure of
nsiderable sums for control measures can be made. Certainly an inadequate
ta base can lead to over— or under-specification (and corresponding over— or
der—expenditure, with the probable need for additional improvements in the
tter case) of control systems. A poor data base due to a poor sampling
tegy also makes the comparison of conditions “before” and “after” much
difficult and decreases the confidence one can have in the comparison, if
1y in the statistical sense.

Final Remarks on Sample Size

From the two methods of estimating a sample size outlined above which are
ed to say anything with any confidence about either the mean of an
uypational hygiene data set, or to ensure that the highest of a sample is in
top T% of the group, you will have seen that large sample sizes are the
der of the day. As has been explained this is due to the wide variation with
e (and space if it applies) of occupational hygiene data. This must be
ompared with laboratory or workshop measurements when sample sizes will be
h smaller — three or perhaps five — for us to be sure we have as reliable a
sult as we are likely to get. There are other methods of estimating sample
e; some with greater precision, but their use hardly seems to be justified
or certain they will not predict smaller sample sizes! There is no
stitute for a properly designed sampling programme with an adequate numnber

"1 YATES, F., (1965) Sampling Methods for Censuses and Surveys, 3rd ed.,
ffin & Co. Ltd., London.

2 LEIDEL, N.A., BUSCH, K.A., and LYNCH, J.R., (1977) Occupational
ure Sampling Strategy Manual, NIOSH, US Dept. of Health, Education and
fare, Cincinnati, Ohic. (DHEW Pubn. No. (NIOSH) 77-173).

. 3 CROSBY, T., (1982) Statistics of Compliance in Sampling, Statistics
Epidemiology, Birmingham October 1980, Institute of Occupational
nists.

.4 SAMCON, a computer program in BASIC available from H & H Scientific
sultants Ltd. Leeds.
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size n for top 10% (t=0+1) and 90% confidence (o= 0-1)

Sample size

8

g

10

11

12

13

14

15

16

17

18

For groups
of size N

11
12

10
13

14
15

16
21

17
18
22
23

19
24
25
31

20
26
a7z
32
33

28
29
34
35
41
42

30
36
37
38
43
44
45

39
40
46
47
48

49
50

If N<=9 then n=N

Table 5.2. Sample size n for top 10% (1t =0-1) and 95% confidence (o= 0-05)

42

Sample size 9 10 11 12 13 14 15 16 17 18 19 20 21 =22
For groups 11 13 14 1% 17 18 19 20 27 28 30 38 40 49
of size N 12 16 2% 22 24 26 32 29 36 39 47 50
23 26 33 34 37 45 48
31 35 43 46
41 44

If N<=10 then n=N

Table 5.3. Sample size n for top 20% (t=0-2) and 90% confidence (x=0-1)

Sample size 4 5 6 7 8 9 10
For groups 6 8 10 15 20,24,25 40
of size N 9 13 18 28-30 45
11 14 19  32-39 49
iz 16 22 41-44 50
17 23  46-48

21 26

27

31

If N<=5 then n=N

Table 5.4. Sample size n for top 20% (1 = 0-2) and 95% confidence (o= 0-05)

Sample size 5 6 7 8 9 10 11 12
For groups 7 8 9 10 14,15,17 19,20,23 £5,29 35,39,40
of size N 11 13 18,21,22 24,2628 30-34 44,45
12 16 3 36-38 48-50 . 1.
41-43 ’
46,47

28

If N<=6 then n=N




6 PROBABILITY PLOTTING

6.1 Plotting Distributions

Usually the first method of plotting the distribution of a sample of
results to be considered is the histogram. The idea is simple, the data being
grouped into a series of ranges, and the frequency of occurrence of results in
these ranges being plotted as in Figs. 2.1, 2.4 and 2.5. Many off-the-shelf
computer graphics and statics programs offer these “bar charts” but at best
they are not very helpful and at worst can be misleading. An example of how
misleading histograms can be was suggested in Chapter 2. In essence the
problem lies in the understandable desire to say that the results depicted in
a histogram fit a normal (or some other) distribution without actually doing
anything further to show that this is so, believing that the effort expended
in acquiring the data needed to produce a histogrem is evidence enough.

More helpful than the histogram is the cumulative probability plet,
derived from the histogram, on graph paper graduated with the appropriate
probability and variable scales. If the results fit the nominated distribution
the cumulative plot will fall on a straight line. But aithough the fit to a
straight line can be better judged by eye than the fit te a curve imposed upon
the histogram, even this needs to be tested numerically.

6.2 Histograms and Probability Plots

In order to be able to plot a freguency histogram or a cumulative curve
there must obviously be a sufficient number of data available in order to
group them into the cells from which the histogram is to be constructed. Ten
values are unlikely to give a very useful histogram. The use of probability
plotting positions overcomes this problem and in theory at least as few as
three points can be used to plot the estimated cumulative probability curve,
in much the same way as a cumulative curve can be drawn from a histogram.

In addition, the use of probability plotting is not limited to small
numbers of data points — in fact there is no (upper) limit to the number of
points. The author believes that there is no longer any place (other than for
purposes of demonstration) for histograms and cumulative probability plots
derived from them. He bases this assertion on the following.

1. By collecting the data values into the cells, the original data are
degraded. Perhaps 1000 data values would be collected arbitrarily into between
10 and 20 cells, giving only this number upon which to do any statistical
tests, such as goodness—of-fit tests, or even calculating the mean and
standard deviation. If Sturges’' Rule (see Section 11.4) is used to calculate
the cell numbers and cell boundaries there would be 11 cells for 1000 points.

2. Probability plotting of individual data points can be done for any
number of poinis greater than 3, and the data are not degraded, since each
point appears on the plot. This has a significant advantage over the
histogram, or its derived cumulative curve, since the shape of the cumulative
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6. Probability Plotting

curve is defined over its full length by the individual points, and deviations
from a straight line, which cen be of interest and importance, are apparent,
rather than being hidden within cells. This effect can be very easily missed
in the end cells of histograms.

3. Considering 1. and 2. together, the labour of producing a histogram or
a cumulative probability plotting curve with modern computing aids will be the
same — simply the entry of the original individual data (assuming you have
suitable programs).

There thus now seems to be no justification for adhering to the use of
histograms and cumulative probability curves derived from them as a basis for
gtatistical analysis. Although they are still of residual interest, too often
they are incorrectly constructed, with no heed paid to the wunderlying
distribution and their theory will not be discussed further.

6.3 Probability Plotting Positions

The idea behind probability plotting positions is not hard to understand,
nor is their calculation difficult. They are used to locate the individual
values of small (or large) samples of ranked data on the cumlative
distribution curve of the presumed population from which the sample was drawn,
The data are first arranged in increasing order (ranked) and then each point
is allocated a percentage plotting position on the probability scale. It is
for this reason that the plotting positions are frequently called “Rankits”
(by analogy to Probits and Logits which are plotting methods used in studying
the effects found in toxicologyl.

6.3.1 Selection of Appropriate Plotting Positions

Statisticians (and users of the technique of probability plotting?> seem
to have different ideas of what values, in probability or percentage terms,
the probability plotting positions should have, and of how they should be
calculated. Imagine that the second ranked concentration of a sample of five
will, on (some sort of) average, plot at a certain percentage value, say
30-36%, on the cumulative percentage or probability scale, Fig. 6.1. Repeating
the sample of five will give some other concentration for this second ranked
point, but this second point from the repeat sample will still be plotted,
according to the rule for the second point, at 30-36%.

CONCERTRATION

Figure 6.1 Repeated plotting of
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This gives a vertical spread of concentrations at 30:36% for each of the
nd highest values from a series of samples of size five. The process of
g plotting positions is thus only an approximation to the full cumulative
ability curve, but it does allow useful deductions to be made from a
ngle quite small sample. Also there is always dispute about which “average"”
tting position should be used — mean, median or mode (see any introductory
book), and what formula gives which. Filliben(1) and Cunnane(2) are among
s who have considered some of the problems.

“The differences in plotting position given by choosing the mean or median
in the formulae selected from calculating them are generally not great,
icularly for large sample sizes, but it mey be of some comfort to use one
h has been shown to give the “best” representation of plotting position
"a particular distribution. especially when only a few points are
lable, as so frequently occurs with occupational hygiene data.

Tabulated Values of Rankits

“Plotting positions for normally <(and lognormally) distributed data are
bulated in Pearson and Hartley(3), Table 28, and also in Leidel et al.4)
e I- 1 for sample sizes from 2 to 50. In the first reference they are
essed as normal deviates and in the second as percentage plotting
tions — they nevertheless correspond one with the other. While the NIOSH
e can be reduced to a computable form, the initial percentage values for
sample size still need to be stored in an array in a computer program.
ample sizes >50 NIOSH suggest using (i — 0:5)/N for the ith point in a
le of size N.

“Universal” Plotting Formulae

In addition to the formula above, the simple formula i/(N + 1) is often
ted and used for all distributions, e.g. King¢5) "and Kennedy & Neville(®),
s formula is exactly true only for the mean positions of the uniform
ibution. The mode of the plotting position for the uniform distribution
- 1)/(N - 1). None of these formulae is used in this book but they are
ded here so that you know what they are if you come across them.
chever plotting position formula is used the points are distributed
metrically about 50% on the x (probability) axis, or, in terms of standard
iations, about zero. Also the greater the number of points to be plotted
arther from the centre will the outermost ones be.

Filliben’s Formula

Almost all investigators agree that probability plotting formulae for
ferent distributions ((logd)normal, (loglexireme value and others) have the

p=2¢(¢ - a)(N+ b), where a = (1 - b)/2 [6.11

For normally <(and by implication lognormally) distributed data
liben(!) chooses to use the median plotting position, for which the last
h) and first exact plotting positions are

pN = 0:51/N, and p1 = 1 — pH [6.2]

aining values are given by
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pi = (i = 0-3175)/(N + 0-365) (1<i<ND [6.3]

Percentage probability plotting positions, needed to plot sample data sets on
commercial probability paper, are of course given by Pi = 100 X pi. For
computer plotting and statistical calculations the probability positions need
to be transformed to the corresponding normal deviates.

Filliben chooses the median plotting position, rather than the mean, in
order to develop his concept of using the probability plot correlation
coefficient (ppcc), r, to test the goodness—of-fit of a sample to a particuler
distribution. By using the median, r becomes independent of the mean and
variance of the sample for normal populations, and the ppec r is still the
best test (according to Filliben) for other (non-normal) distributions. For
formulae to calculate the plotting positions of other distributions you should
see, for example, Cunnane(2). Filliben’s formulae, [6.2] and [6.3], are not
the best for the (loglextreme value distributions, nor probably is i/(N + 1),
which is to be found in the fundamental works by Gumbel on these distributions
and in Kennedy and Neville(6),

So for a sample size of 5 the fifth (highest value) will be plotted at
87-06%, the first (smallest value) at 12-94%, and the second, third and fourth
at 30-36%, 50%, and 68-64% respectively. The end points for the sample of 1000
mentioned above are at 0:069% and 99-931%, and the second point will be at
0-168%. The 500th and 50ist points will plot at 49-:95% and 50-05%. This is, as
would be expected, a greater spread, with much tighter packing, than is the
case for five points.

6.4 Correlation Coefficient

Most data which the hygienist will come across can usually be
approximated by either a normal or lognormal distribution. You should be aware
that there are many other distributions which may occur, albeit more rarely,
in particular the extreme value distributions, but these are not considered
further.

From this point there is a heavy computational load. It must be clear
that while all this computation can be done, writing down tables of
intermediate results, on a suitable programmable calculator, it is no effort
for a computer once the program has been written. Nor is there a risk of data
input errors using & computer once the program has been proved and the raw
data been checked and corrected if necessary.

Having ranked the data in increasing magnitude, and allocated percentage
plotting positions (rankits), the plot on normal or lognormal probability
paper can be tested for the best fitting distribution.

First, the two means and standard deviations are calculated for the raw
data and the logged data. If the data are distributed lognormally the Minimum
Variance Unbiased estimates of the population arithmetic mean and variance
(see Section 3.6) can be calculated from the geometric mean and standard
deviation, or more likely from the corresponding log values, and from N.

Next, the percentage plotting positions must be converted to: their
corresponding standard deviations. This is most easilY*Td9

polynomial approximation shown in Section 10.2.2. This converts

percentage scale to a linear one of normal deviates, as_shown. in
data values are then handled in raw end logged form:i‘
calculating the correlation coefficients and regressio
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s values on the x-axis are now in terms of sgtandard deviations, and on the
is as raw ranked data in one case and ranked data logarithms in the other.

In this section the notation follows the usual one of using x for the
jgsa (in this case the linear scale of standard deviations) and y for the
ate, (the data or their logarithms). Do not confuse the use of x and y
_with their use as data values and their logarithms elsewhere in this

‘The correlation coefficient, r, is given in its general form by
T(xi — ®Cyz — P

JIZ(x ~ %22, 2Cyi — 2]

xi = —Xn-it1 and ¥ = 0, the plotting positions being symmetrical about

robability (or 0 ND), the formula reduces to

[6.41]

r:

IRiyi
TIxiZ J2(ys = §02 [6.51

Because the data have been ranked in increasing order the correlation
ficient is always >0, and in fact has minimum values, related to the
er of points. For these reasons the usual published tables which give the
1ificance of the correlation coefficient given by [6.5]1 must not be used.
significance table provided by Filliben should be used, or the
ximation to it given in a BASIC program by Dhanoa(7’.

The distribution which has the higher correlation ccoefficient is assumed
be the more likely one, and subsequent operations are usually carried out
the data for this distribution. The alternative distribution may be
ted if desired, and all the required information should still be
‘1able in the computer.

egression Equation

The least square regression equations, (y on x in the usual nomen-
re), of data and log data on standard deviation are calculated in the
' way, remembering that the symmetry of the plotting positions about zero
can again simplify the calculation, although why this should be of much
cern to a computer might be debated.

m (sloped = (nZxXiyi — 2Xi.Zyi)/(nZxi? — (2i)2) [6.6)
¢ C(intercept) = (Ixi2.%yi? - IXi.Zxiyi)/(nixi?z — (Ixi)?2) {6.71

‘is the way calculators handle regression (and correlation) data. You
d examine the memories of your calculator to confirm this. You will find
ters for 3XIx, 3y, Ix?, 3y2, and Zxy. These equations involve the
action of two large positive quantities one from the other, and is
tially inaccurate yet the method is widely taught. A better way which
uces the likelihood (and size) of errors arising from this cause can, like
calculation of the estimate of the standard deviation, be done on
ters by first calculating the means of x's and y's, X, and ¥.

The straight line passes through the point (X,y¥), and if we put

X = {xy; — %) and Yi = (yi — ¥

m = IX;Yi/ZTX;? [6.8]
c = (IX;2.Tyy — Txi.3XiY31)/(n=X;2) (6.91
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This last equation (for c) is slightly better than first calculating the slope
m and then substituting in

¥ =mk %+ c

especially when ¢ is close to zero (although this is never the case for data
fitting a lognormal distribution). It would seem good computing practice to
use the equations [6.8] and [6.9] when writing the program. You are unlikely
to notice the extra time to work through two “FOR - NEXT” loops, even on
“slow” computers, remembering that no computers are slow (ask anyone who
recalls doing statistics on narrow ruled foolscap fly, with pencil and
mechanical calculator), although some may be faster than others.

It should be noted that in some books it is suggested that the slope of
the regression line (or more properly the slope of the cumulative “curve”
drawn by hand on commercial probability paper) can be taken as the standard
deviation. This might have been a short cut of adequate accuracy before
calculators and computers were as widely available as they are at present.
Certainly with computers only one entry of the original data is sufficient to
calculate all the parameters needed without resorting to graphical methods.
Plotting the results nevertheless is still a useful aid in visualising the
results, and perhaps confirming that the regression line does intersect the
50% line at the mean, and highlighting deviations from a straight line, as may
frequently happen, at either end.

6.6 Confidence Limits

The method of calculating the confidence 1limits of the means, both
arithmetic and geometric, has been discussed in Chapter 3, and it has also
been pointed out that the confidence limits of the MVU estimate of the
arithmetic mean of lognormally distributed data cannot be calculated.

Having got the regression equation, other confidence 1limits can be
calculated, including those:—
1. for the slope of the line,
2. for the confidence area of the regression line,
3. for the influence of the confidence limits of ¥ on the confidence
limits of the line,
4. for the confidence limits of an estimate of y.

This last is of particular interest to hygienists, since it allows an
estimate to be made of what might have been had ancther sample of n resulis
been taken. In other words it allows a prediction to be made, at some proposed
confidence level, for example, of what the highest or lowest value could be
for another set of random measurements taken from the same population.

The steps, following the calculation of the regression equation, are

1. calculate the standard deviations (Sy.x) of the points from the least
square line

Sy.x = JI(E(yi - {m.x3 + c})2)/(n ~ 201 [6.101

This is sometimes known as the *“standard deviation from regression” or the
“standard error of estimate”. Note that yi are the data values and (mx; + c)
are the velues of y (¥) predicted from the x: (plotting p051t10n) values Note
also the n — 2 degrees of freedom.

2. calculate the standard error of the predicted individﬁél § values
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6. Probability Plotting

Eyi = Sy.x/[1 + ¥n + (x5 — ®)2/(S{x - K31 {6.111

Note that since X = 0, the origin of the x axis, and that Z(x - %)2 values are
already available from the regression calculations, only xi has to be entered
into the equation for each point, this being the rankit in SD values. Also
since xi is symmetrical about the origin and is squared in the equation, one
calculation suffices for symmetrical points. The “1” has a profound effect on
Eyi and there is nothing to be done about it, but the more points there are
contributing to the line the smaller will Eyi be as 1in decreases (sample size
n increases).

3. decide on a confidence level (say 90%) and calculate the degrees of
freedom = n — 2. Look up the value of t in the t-distribution table, using the
two—tailed distribution, or calculate % using the approximation given in
Section 10.2.4. For example a week’s full shift samples, i.e. five days,
DF = 3, and t = 2:353 for a confidence level of 90%.

4. calculate the confidence interval (about the line) for each value of
¥, the y value on the line, not the data (or its log) value

9L = ¢ t tn-2.Eyt (6.12]

The values of JL are plotted for each rankit point, that is tn-2.Eyi for each
value are plotted as offsets above and below ¥ on the regression line. These
are the 90% confidence limits we have in proposing that were we to take (or
were we to have teken) another n samples (sampled on another week?) from the
population, the results would not have fallen outside these values.

Note the four-fold symmetry of the offset wvalues, since =*in-2.Eyi is
obviously symmetrical above and below the line, and at the same time the ith
and (n—i+1)th points are symmetrical about 0 SD or 50%. These symmetries can
be used to ease the computational load for both calculators and computers.
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7 EXAMPLES OF PROBABILITY PLOTTING

7.1 Initial Comments

Although only three probability plotting cases will be discussed, this
Chapter has been set aside for them, since the detail is probably novel and
will require rather more explanation than has been given in earlier Chapters.
The cases are all real, although you could generate your own data using random
normal deviates (see Section 4.4). The purpose of this extended coverage is
not to convert you to the belief that all data from occupational hygiene
measurements are lognormally distributed, or even to show that very few are
lognormally distributed, but simply to show that the best fitting distribution
can be selected with minimum effort with the aid of a computer, although if a
calculator is used, even a programmable one, the effort will be considerable
but still worthwhile.

As we shall see in this Chapter and in Chapters & and 9, knowing the
distribution can be of profound significance when applying statistics which
are more usually applied to normally distributed data, or to any data under
the assumption that all data are normally distributed. Some of the data in
Chapters 8 and 9 have been tested for distribution. You may like to retrace
the calculations to meke sure that you get the same results and that the
correct distributions have been chosen.

The outline of the necessary steps has already been given, but this
Chapter will follow the arithmetic of a simple example in detail, before
discussing the outcome of other examples. One program which may be used to
determine the most likely distribution is given in the BOHS Technical Guide
No.1¢1}, The arithmetic used in this Chapter is taken from the OH Program
FILPLOT(2) as are the figures which have been output by the Sharp PC1500
computer. FILPLOT has in fact been used as the model, even to the extent of
invoking the operations which the program undertakes from time to time. This
may be of help if you wish to write your own program, and should not intrude
significantly while following the arithmetic.

A comment on the use of programmable calculators and computers was made
in the last Chapter, and at this point perhaps it might be appropriate to
comment further on their use. Rankits are easy to calculate. The polynomial
conversion of percentage plotting points to standard deviations can also be
done conveniently on a programmable calculator, although each rankit must be
entered in turn. A calculator with statistical functions is convenient for the
calculation of means and standard deviations and also regression equations and
a few correlation coefficients, but this will call for at least two entries of
the ranked data, depending on the calculator, but the labour and risk of input
errors increases with increasing sample size. By the time it comes to
calculating the confidence limits of another sample the calculator must, in
practical terms, give way to the computer whatever the sample size.
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7. Examples of Probability Plotting

Although the statisties are, of course, numerical the output of a
graphical representation is always a help, and since the graph will not be
used for reading off values, such as percentiles, as one might from commercial
probability paper, the skeletal graticule and its reduced size is no
disadvantage. Fig. 7.1 shows two typical probability graticules which might be
output as part of the program.
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Figure 7.1 Normal and 2-cycle lognormal probability graticules.

7.2 Example 1. Four Full-Shift Dust Concentrations

These data are taken from an extended exercise in an ironfoundry — other
results from the series are used in Chapter 9. The data are respirable quartz
concentrations in mg/m? measured on four successive days on a foundry worker.
As has already been suggested the arithmetic is at all times carried out on
the raw or logged data, exponentiating logarithmic values only when a
numerical output is required for the benefit of mere mortals. Alsoc only a few
places of decimals are used here, although the computer of course runs with
the full precision of which it is capable, rounding only for outputs.

7.2.1 The data inputs, then, are
0-036, 0-035, 0-129, 0-079.

7.2.2 After checking and correction if necessary the data are ranked,
using a suitable sorting routine, the plotting positions are computed using
[6.21 and £6.3], and the logarithms of the data are found (natural logs in the

program). All data for the lognormal distribution are now worked through as
logarithms only.

Ranked data 0:035 0-036 0-079 0-129
Plotting positions, % 15:91 38-55 61-45 84-09
Logs of data ~-3.352 -3-324 -2:538 -2-048

Although the probability plotting percentages are output as shown, it should
be remembered that only half are computed, the remainder being derived by the
simpler and faster expedient of subtracting the values from 100. As has

already been mentioned this symmetry can be, and is, used to advantage in the
program.

7.2.3 Means and standard deviations for data and log data are computed,

using [3.11, [3.2b], £3.41 and £3.5b]l. In the “b" equations the values of x—%,
or deviation, is used.
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Mean and SD of arithmetic data  0:0698 0-0445
Mean and SD of logged data —2-8157 0-6359

7.2.4 Remembering the symmetry of % plotting positions about 50% and of
SDs about O, percentage plotting positions (% pp) are converted to SDs using
the polynomial approximation in Section 10.2.2 (or the table of Normal
Deviates).

% pp 15.91 38:55  61-45  84:09
SD pp  —0-998 -0-291 +0-291  +0-998

Only the second half (SD>0) values are calculated, the remainder simply being
obtained by observing the symmetry and changing the sign.

7.2.5 The next step is to calculate, in parallel, the sums of squares
and products needed to find the standard deviation from regression,
correlation coefficient, and slope (the intercept is the mean) for the
arithmetic and logged data. With the usual usage of x and y in regression
analysis

Arithmetic Sums of (data deviations)? 0-00%5943
Sums of data deviations x 8D G-106326
Sums of (8SD)>2 2:161553
Logarithmic Sums of (data deviations)? 1-213061

Sums of data deviations x 8D 1-b530623
(Bums of (SDY2, not recomputed = Sums of (8D3¥2 for arith—

metic datad.
7.2.6 These data are now used in [6.5]1, [6.8] and {6.10] to get
Normal Lognormal From
r 0-945 0-938 [6.5]
Slope 0:04918 070806 (6.81]
SDree (Sx.y) 0-01887 0-25431 £6.101

7.2.7 At this point in the program parameters for both distributions are
output and the choice is offered to work from now on with the distribution
having the higher correlation coefficient. If this is rinor the MVU estimstes
of AM and ASD will already have been output (Section 3.5).

7.2.8 Depending on the distribution chosen the regression equation

y = mx + ¢ gives intercepts at 1% and 99% (x = £2-32635 NDs, m and c
from 7.2.3 and 7.2.6 above). These intercepts are calculated for the purpose
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Figure 7.2 Ranked data and their probsbility plotting positions
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of manual plotting on the appropriate commercial normal or lognormal
probability paper. At this point there is sufficient datas to allow Fig. 7.2 to
be drawn.

Also the numerical 95% confidence limits for the mean are output using
[3.11-03.2b}, t being calculated in a subroutine (see Appendix 10A.1) for the
required degrees of freedom, 3, (¢t = 3:1786 in this case) or read from the
tabulated values (t = 3.182, the calculated value is <0+1% low).

7.2.9 Next the intercepts on the regression line of the probability
plotting positions, ¥, can be calculated, entering the SDs from 7.2.4 in the
regression equation. Then the standard errors Eyi in £6.11]1 and confidence
limits ¥ in [6.12] for each of these intercept points are calculated. These
confidence limits, of course, have + and - values, and can be thought of, for
the sake of brevity, as “offsets” above and below the ¥ values at the plotting
positions. In fact the program combines {6.11] and [6.121. and also for the
printed output merely does this for the higher (+) offset of the highest and
lower (-) offset of the lowest points.
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Figure 7.3 Confidence limits for the four plotting positions

For convenience the envelope of the offsets is calculated as a curved
line approximated to by the computer as a series of straight segments. If the
offsets were actually plotted as vertical lines defining the confidence limits
at each plotting point the picture would become very confused for a large
sample size. Fig. 7.3 illustrates the reality of the confidence limits for
another random sample drawn from the same population.

The value of the confidence level is set at 80% (two tail), which is the
equivalent of 90% (one tail) and the value of t is again calculated from the
subroutine in the program for the (n-2) degrees of freedom for use in

calculating the confidence limits Eyi in [6.121. The calculated value is
1-883, the tabulated value 1-886.

Table for confidence envelope

% 8D ¥ roffset
99 2327 -1-168 0:928 (¥ and offset are logs!)
95 1-645 ~1+651 0-758
80 0-841 —2+220 0-602
50 O* -2-816 0-535
200 (-0+841> -3-412 (0602
(5> (—-1-645> -3-981 (0758
(&) (~2-327) —4.463 (0-928>

* The polynomial gives ~1E-07, which is near enough to O.
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The exact forms for 1 and 2 DF are not in the program — there is little
expectation for precision from small sample numbers and little call for high
confidence levels in occupational hygiene data.

The values in parentheses are not calculated using the equations since
they are symmetrical about 50% in column 1, and 0 in column 2. The actual
values of the offset points are given by (¥ % offset), which must be
exponentiated to be plotted on commercial log probability paper, so that at
99% the envelope for the highest value expected (notionally from another
sample from the same population) is

exp(-1-168 + 0-928) = 0:7866, and for the lowest expected value at
99%

exp(-1-168 — 0:928) = 0:1229. As has been pointed out this envelope
has no real existence in fact, it merely defines the confidence limits the n
values which ¥ would have if plotted individually. It certainly has no meaning
at 1% and 99%, except to enable the envelope to be drawn, since these values
are beyond the lowest and highest plotting positions.

In the computer program used to work these exsmples this routine is also
used to calculate the highest expected value from another sample of the same
size, in this case 4, from the same population, except that the 8D used in the
regression equation is that already calculated for the highest plotted point
at 84.09%. This is followed by calculating the standard error, Eyi from [6.111
and the offset value [6.121 t,-2.Eyi, the one calculation deoing for both the
upper and lower values, the first being added and the second being subtracted
from ¢i, the intercepts of the line at, in this case 84-091% and 15-91%, that
is #0:998 8D, to give, with 90% confidence, the highest and lowest expected
values from another sample. The offset is 0:6265 which is added to ¥4 and
subtracted from $1 to give -1:4825 and -4-1489, which exponentiate to 0-:2271
and 0-0159,

7.2.10 The program also offers a graphical output, and a rerun of the
same data in case the other distribution should of interest.

Obviously there is a considerable amount of computing involved, not
beyond the capabilities of a pocket calculator but tedious. A computer is the
ideal tool, not least because it always gets it right if the input data are
correct. The computer output obviously does not include all the data above,
being limited to that given below, and the optional graphical output,
Fig. 7.4, here shown as presented by the Sharp PC1500.

Figure 7.4 Probability plot for Example 1.
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A typical text output from a computer program would be the data as input
(for checking and if necessary correcting them and as a permanent record and

ranked, together with the percentage plotting positions for the ranked data,
followed by

LOGNORMAL, DISTRIBUTION R= 0.945, R FOR NORMAL~= 0.938

SAMPLE ARITH MEAN= 0.0698, SD= 0.0445

MVU ESTIMATE OF ARITH MEAN= 0.0694, OF SD= 0.0428
GEOM MEAN= 0.0599 GEOM SD= 1.8887

JOIN UP 0.0115 & ©.3108 AT 1% AND 99%

WITH 95% CONFIDENCE THE MEAN LIES BETWEEN 0.0218 and 0.1645

WITH 90% CONFIDENCE THE MAXIMUM VALUE FROM ANOTHER SET OF 4 RESULTS
WOULD NOT EXCEED 0.2271, THE MINIMUM WOULD NOT BE LESS THAN 0.0158

80% CONFIDENCE LIMITS ENVELOPE FOR OTHER Y VALUES

PLOT UPPER 80% LOWER 80%
% LIMIT LIMIT

1 0.0292 0.0046

5 0.0398 0.0088
20 0.0602 0.0181
50 0.1023 0.035

80 0.1982 0.0595
95 0.4093 0.09

99 0.7865 0.1229

Not all the outputs from the program will be of interest each time it is
run. If it is only intended to select the best fitting distribution only the
correlation coefficients might be wanted. If you are concerned with STELS only
highest value from another sample of the same size would be needed or if you
are trying to define what sensitivity you really need in your sampling and
analysis the lowest from another sample might be of most interest.

7.2.11 As was pointed out at the beginning of this section this data set
was only one of a series. In fact there were 48 such sets arising from 8 men X
2 days x 3 concentrations (total dust, respirable dust and respirable quartz).
Of these sets 31 were found to be lognormally distributed, at the p = 0-05
level for Filliben’s Probability Plot Correlation Coefficient (PPCC), r. In
some cases the normal distribution was also significent at p = 0-05, but 3 of
the sets did not fit either distribution at p = 0-05. In addition to the
personal samplers a GCA 101 (B absorption) portable dust monitor was used to
take some 530 readings in 50 data sets. Of these 21 were lognormally
distributed, 22 were normal and 7 failed to fit either distribution at
p = 0:05. Again there were cases for which both distributions could be
significant at p = 0:05. In such cases it was usual to use the distribution
with the higher PPCC. The effort which went into the work was not directed
solely at a study of the form of the distributions but was utilized for
occupational hygiene purposes. The determination of the distributions was
simply a necessary step in the overall investigation. The frequencies with
which the two distributions occurred show that it is necessary to test for
both, and that either (and indeed both or neither) may occur.

7.3 Example 2. Shori-term Concentrations

Suppose the following 10 personal exposures to formsldehyde were measured
at random times for a continuous process, the sampling period being 10
minutes.
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0-055, 0-088, 0-192, 0-401, 0-505, 0-612, 0-645, 0-654, 0-666, 1-132.

7.3.1 The procedure for an initial statistical analysis should be
familiar by now, and first a somewhat simplistic approach will be followed.

1 Rank the data (they are already ranked), and calculate logs.

2 Calculate means and standard deviations.

3 Allocate percentage probability plotting positions.

4 Convert these to SDs.

5 Calculate the regression equations for arithmetic data against SDs and
logs of data against SDs and the correlation coefficients.

6 Depending on requirements calculate the confidence limits for the mean
of the selected distribution, and of concentrations for another sample of 10.

7 Plot the distribution.

8 Proceed to apply the statistics to your problem - the computer output
is of little use on its own.

Working firstly on the simple assumption that all occupational hygiene
data are lognormally distributed, we find that the following data can be
calculated immediately:-

Arithmetic mean 0-495 ppm  Arithmetic BD 0-326 ppm
Geometric mean 0+360 ppm  Geometric 5D 2-674
MVU est. of AM 0-548 ppm

None of the measurements exceeds the Short Term Exposure Limit
(STEL> value of 2 ppm.

Caleculating the probability plotting positions and the confidence limits
for another sample of 10 from the same population (same working shift of 48
such 10 minute pericds) and plotting them in Fig. 7.5, we find that, with 90%
confidence, there could be one (the highest) of the sample which would exceed
the STEL, with a concentration of 3:05 ppm. This might cause some minor alarm.
In an effort to massage the results without doing too much damage it could
perhaps be proposed that the highest concentration of 1¢132 ppm is a
“gtatistical outlier” and should be omitted, after all it is about twice as
high as the next highest (whatever else is done, don’t do a statistical
test!).
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Figure 7.5 Probability plot for 10 concentrations.
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This will reduce the means to:-
Arithmetic mean 0-424 ppm
Geometric mean 0-317 ppm
MVU est. of AM ©+467 ppm

And the standard deviations will change to
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ASD 0-251 ppm

GSD 2-590
This, together with the reduction of n from 10 to 9 will influence the
plotting positions, and the highest value expected from another sample. The
result, in Fig. 7.6, is that this highest expected value is now 2'613 ppm,
still above the STEL and not really very much of a return for the effort.
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Figure 7.6 Probability plot for 9 lowest concentrations.

There is an aliernative, which does have some occupational hygiene merit.
From the notes made during the sampling exercise it is found that when the
lowest concentrations were measured the man was not at his machine. These
concentrations might be part of his daily exposure pattern, but not of his
possible exposure pattern due to the machine. So they can be removed from
consideration, restoring the highest concentration at the same time. This time
the means increase to:-

AM 0-601 ppm

GM 0-543 ppm
Also the highest concentration expected from another (still lognormally dist-
ributed) sample would be 1:609 ppm, beiow the STEL at last, as can be seen
from Fig. 7.7.
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Figure 7.7 Probability plot for 8 highest concentrations.

Again this all seems to have been somewhat laboured — why not start as it
should have been analysed?
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7.3.2 It should have been decided before sampling began whether the
purpose of the exercise was to estimate the man's STE under all working
conditions if these typically included the absences, or whether it was only
intended to consider the man/machine relationship. On this basis the decision
would be made either to include or to exclude the two lowest concentrations
from further consideration, on the grounds that the conditions under which the
samples were collected indicate that these two values do not belong to the
exposure population associated with the machine. Both options will be covered
here, but only for the purposes of illustrating their effects.

The computer outputs for the analyses are given below, and the {irst
thing to notice is that the distributions are, in both cases, normal and will
be treated only as such.

Formaldehyde, all points

NORMAL. DISTRIBUTION R= 0.961, R FOR LOGNORMAL~ 0.926

ARITH MEAN= 0.495 ARITH SD= 0-326

WITH 95% CONFIDENCE THE MEAN LIES BETWEEN 0.262 and 0.728

WITH 90% CONFIDENCE THE MAXIMUM VALUE FROM ANOTHER SET OF 1C REBULTS
WOULD NOT EXCEED 1.165 AND THE MINIMUM WOULD NOT BE LESS THAN-0.175

Formaldehyde, only top 8 points

NORMAL DISTRIBUTION R= 0.938, R FOR LOGNORMAL= 0.929

ARITH MEAN= 0.601 ARITH SD= 0-269

WITH 95% CONFIDENCE THE MEAN LIES BETWEEN 0.376 and 0.826

WITH 90% CONFIDENCE THE MAXIMUM VALUE FROM ANOTHER SET OF 8 RESULTS
WOULD NOT EXCEED 1.163 AND THE MINIMUM WOULD NOT BE LESS THAN 0.039

In the event the inclusion or omission of the two lowest concentrations
does not affect the estimated highest wvalue from snother sample, both are
below the STEL, although the means and SDs change. Notice, too, the prediction
of a negative concentration! The probability plots are shown in Fig. 7.8
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Figure 7.8 Probability plots for formaldehyde concentrations.

7.4 Example3. Welding Fume

These are some personal (MIG) welding fume concentrations.:The only thing
known about them is that they are from a group of men doing' the same job, the

44




7. Examples of Probability Plotting

samples were taken according to BS 6691: Part 1:1986, and the first sample was
for a short-term operation not really typical of the general work.

Total particulates, mg/m3: 0-8, 4.2, 6-5, 7-8, 8-8, 9-5, 11-4, 13-4,
14+-0, 15-6, 18-0, 18-1.

Since the first value is reported to be not of the “homogeneous” group
(that is the same man, the same machine, continuous work rate, and all
conditions uniform) it can be immediately  discarded, leaving 11
concentrations. The computer analysis, omitting the output of the data and the
probability plotting percentages is

NORMAL, DISTRIBUTION R= 0.988, R FOR LOGNORMAL~ 0.974
ARITH MEAN= 11.57 ARITH SD= 4.64
GEOM MEAN= 10.62 GECM SD= 1.58

JOIN UP 0 & 23.15 AT 1% AND 99%
WITH 95% CONFIDENCE THE MEAN LIES BETWEEN 8.45 and 14.69

WITH 90% CONFIDENCE THE MAXIMUM VALUE FROM ANOTHER SET OF i1 RESULTS
WOULD NOT EXCEED 20.47 AND THE MINIMUM WOULD NOT BE LESS THAN 2.67
80% CONFIDENCE LIMITS ENVELOPE FOR OTHER Y VALUES

PLOT UPPER 80% LOWER 80%
% LIMIT LIMIT

1 1.35 -1.36

5 4.61 2.16

20 8.5 6.27

50 1.65 10.56

80 16.88 14.64

95 20.98 18.53

99 24.5 21.79

Again, the data are probably from a normal distribution, with more
negative predictions. The "zero” intercept of the regression line on the
1 percent probability line is actually -0:0010i4. Remembering that it is often
imprudent to extrapolate beyond the limits of the data this value should not
cause alarm, the data extending in this case from 6-:11% to 93:89%, using
Filliben’s formula. Also the negative lower confidence limit of the envelope
at 1% is somewhat more than mythical (see 7.2.9 above) again because the plot
does not actually go lower than 6-11% (the plotting point of the Ilowest
concentration) and the envelope can only define the ends of the confidence
limits above and below the line at the actual probability plotting positions.
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Figure 7.9 Probability plot for welding fume concentrations.
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7. Examples of Probability Plotting

To what use the analysis was put is not known - perhaps it helped in a
comparison test with conditions after local exhaust ventilation was installed,
or was used to compare conditions in ancther plant doing the same welding
operation, or with a different welding method (remember this was MIG welding).

7.5 Concluding Remarks

Probability plotting is not, of itself, much use. Its value lies in the
use to which it is put. You will find that many statistics are applicable only
to data which are normally distributed. Sometimes this is stated but often it
is only implied. Confirming that the data are normally distributed when they
might be expected to be lognormally distributed, or showing they are indeed
lognormally distributed will allow you {o decide whether the statistic can be
used “as is” or whether its form (and interpretation) must be modified before
it can be applied, as will be found in Chapters 8 and 9.

7.6 References

1 BOHS Technical Guide Series No. 1, 1983, “Statistical Analysis of
Monitoring Data by Microcomputer”, (£2.00), from the BOHS Office,
1 S5t Andrew’s Place, Regent's Park, London NW1i 4LB August 1983.

2 FILPLOT A program available from H & H Scientific Consultants Ltd,
P.0O. Box MT27, Leeds LS517 8QP.
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8 PAIRED T-TESTS

8.1 Use of Paired t-tests

The use of the word “tests” in the plural is deliberate. In most text
books it is treated in the singular, and is applied to data in pairs to test
whether there is a statistically significant difference between them, or more
correctly “Are the means of the differences between the corresponding pairs
significantly different?” This is not the same as “Are the means of the two
data sets significantly different?” which is the question considered in the
next Chapter.

The occasions when such pairs arise by chance, especially in cccupational
hygiene, are rare and should be treated with the deepest suspicion. Most
usually paired data occur as the result of a deliberate attempt to compare two
effects. A common one might be “Does the new sampler give the same result as
the old sampler?’ The easiest way to test this is to set up an experiment to
test the two samplers together under a variety of conditions. We will see how
this worked in a real case.

The usually described test is for the mean arithmetic difference between
the pairs, but some occupational hygiene data are lognormally distributed, eand
following the arguments proposed earlier, that is to work with the logarithms
of the data, the paired t-test then becomes one of testing not for mean
(arithmetic) difference between the pairs being different from zero but for
the mean ratios between the pairs being different from unity.

This can be modified to test whether the mean ratio between pairs is
different from some specified ratio other than one, just as one can test for
an arithmetic mean difference between the paired data not being equal to some
value other than the usual zero.

A critical point about the paired t-test is that it is not permitted to
rearrange the data from the pairs, for example, by increasing rank or by
random choice. The data must always retain their original paired association.

8.2 Calculation of Mean Differences

The differences between the two sets of paired data xi, x2, . . %n and
Zt, 22, . . 2Zn are calculated.
Data Data Difference
i Zi di = Xi — zZi

for values of i ffom 1 to n, then the mean, d, standard deviation, o4, and
standard error of d, SEJ, are calculated.

d = Td;/n
od = S[2(d; -dr2/{(n - 1)1
SE4d = gg/fn

DF = n = 1, there are n-1 degrees of freedom for n pairs of data.
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8. Paired t-tests

From this data t is calculated
t = d/8Ea which is then compared with the values in the
t-distribution table with the correct deprees of freedom and at some chosen
level of significance, say 5%. If tcalc’tteble then, at the selected level, the
mean differences are significant., Alternatively the probability, p, can be
calculated directly.

8.3 A Case for The Paired t-test

Allen, Bellinger and Higgins(i} reported on a new sampler designed for
use in the lead industry. The sampler was paired with the conventional (UKAEA)
sampler and the pairs tested in the field firstly as static samplers with the
sampling heads about 50 mm apart. Ten pairs of results were obtained for
background lead-in—air concentrations in a battery pasting department. A
second test was carried out with the UKAEA sampler mounted on fourteen
workers’ lapels, and the new sampler mounted very close to the orinasal
region, and fixed in relation to it.

The concentrations (mg/m3?) measured for the static tests were

Run UKAEA New d

1 0-043 0-049 -0-006
2 0-062 0-069 —-0-007
3 0-072 0-075 -0-003
4 0-120 0-111 0-009
5 0-063 0:035 0-028
6 0-067 0:043 0-024
7 0-086 0:076 0-:010
8 0-087 0-118  -0-031
9 0-037 0:029 0-008
10 0-051 0-049 0002

Applying the paired t-test to these data we get

d = 0-0034 mg/m3, o4 = 0-0168 mg/m3, and calculated tg9 = 0-639 which
is not significant, since tg at 5% confidence is 2:262. In fact p is 53-8%.
The conclusion is that the mean differences are not significantly different
from zero and the lead in air concentrations are equivalent, when the samplers
are operating as static samplers.

When sampling with the UKAEA sampler on the lapel and the new one at a
true orinasal position between nose and mouth Allen, Bellinger and Higgins
found the concentrations were

Worker UKAEA New d

1 0-223 0-124 0-099

0-354 0:199 0-1565
3 0-292 0-148 0-144
4 0-224 0-142 0-082
5 0-137 0:115 0-022
#] 0-115 0-094 0-021
7 Q-327 0-360 ~-0-033
8 G-174 0-208 ~(-034
Q9 G117 G-104 0-013

10 0-155 0-186 -0-031
11 0-110 0-167 -0+0567
12 0256 0072 G184
13 0-170 0:142 0-028
14 g-181 0-119 0-062
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8. Paired t—tests

From these data we get

d = 0-0468 mg/m3, ocg = 0-0769 mg/m3, calculated ti3 = 2+279 which
this time is significant at the 5% (two-tailed) 1level (p = 4:0%>. The
tabulated value of tiz at 5% significance is 2:160. The mean d4ifference
between the measured concentrations is not zero. The measured concentrations
at lapel and nose/mouth are different. (Note that it is not correct to say
that the samplers are different, since it has already been shown that they
give the same concentrations when used in similar conditions). The paired t-
test is one thing, the occupational hygiene is another — you have to take your
courage in your hands and say “the lapel is not the best location for a
‘breathing zone’ sampler”, at least in the pasting department.

8.4 Extending the Paired t-test

It may be that in some occupational hygiene data there is some suspicion
or even an a priori expectation of the difference between pairs not being
arithmetic, but a ratio. One method of analysis might be expected to be four
times as sensitive as another or the new local exhaust ventilation system is
intended to reduce background concentrations to an eighth of what they were.
For such cases, although they would obviously give mean differences between
pairs which were not equal to zero, a more informative test would be one which
showed that the ratios of the pairs were different from one, or even in these
two examples were not different from 4 or 0-125. This would be the null
hypothesis.

Although the lead-in-air data do not suggest that the differences between
pairs will be better expressed as ratios rather than arithmetic differences we
can use them to illusirate the technique.

Since it is a Friday afternoon, raining and the computer is free you
might feel inclined to apply Filliben’s correlation coefficient test to the
four data sets. You would find that all four data sets are lognormally
distributed. You might also do & simple least square regression and
correlation analysis on the static and personal data. In the first case the
pairing may be lost, since the Filliben plotting routine rearranges both sets
of data into increasing order. This has happened with both the static and
personal sampler data sets. On the other hand a standard regression or
correlation coefficient analysis of z on x obviously retains the pairing. If
you superimpose the Filliben plots for the UKAEA and the new sampler for the
static sampling you will find that they are essentially coincident (which is
no more than you'd expect), but for the personal sampling they are offset and
paraliel.

Since the probability plots are done on the logarithmic scale <(and
knowing what we do about logarithms) it might not be out of order to think
that the personal sampler offset represents not an arithmetic offset, but a
logarithmic one, i.e. ratio differences, rather than the arithmetic
differences we have tested for already. At this point proceed with caution,
since the plots have been “fixed” by the ranking process and are no longer
paired, but nevertheless it might make sense to test for ratio differences on
the original (unranked) data. This is reinforced by looking at the least
square regressions. The slope for the static samplers is close to unity, and
the intercept is very small. Not very interesting on its own.
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8. Paired t-tests

But for the personal sampler data pairs the slope is far from one, 0-39
in fact, again suggesting that there might be more than just a simple
arithmetic difference between pairs.

The final column for the static sampling data has been changed to
diog = (log xi — log yi?

Run UKAEA New dieg
0-043 0:049 -0-057
0-062 0069 -0-046
0-072 0-075 -0-018
0-120 0-111 0-034
0-063 0-03b 0-2bb
0-067 0-043 0-193
¢-086 0-076 ©-054
0-087 0-118 -0-132
0-037 0-029 0-106
10 0-051 0-049 0-017

Working with diog instead of d, we find that

dleg = 0:0405, og = 01176, to = 1-089 which is not significant
(p = 30-4%). The interpretation of this is that 10tdiog = 1:0978, in other
words the ratios of the pairs are not significantly different from unity when
operating as static samplers.

O WNO T W =

For the personal sampler pairs we can, from the data below, calculate
dleg = 0-1174, o©g = D-1894, t13 = 2:320 which is significant at the 5% (two—
tailed) level (p = 3-7%). In this case the log differences between the pairs
is significantly different from zero, and in fact the mean of the differences
of the logarithms is interpreted as a ratio between pairs of 10tdicg = 1:305,
If we had had real evidence beforehand for the existence of this ratio between
pairs, we could have tested the null hypothesis that the ratic between pairs
on the lapel and at the nose/mouth was 1:3, and would then have found
t = 0:069, which is not at all significant statistically, with p = 94:6%.

The data for the personal sampler pairs were

Worker UKAEA New diog

1 0-223 0-124 0-255
2 0-354 0199 0-250
3 0-292 0-148 0:265
4 0-224 0142 0-198
5 0-137 0-115 0-076
6 0-115 0-094 0-088
7 0.-327 0:360 -0-042
8 0-174 0-208 -0-078
9 0-117 0-104 0-051
10 0155 0-186 ~0+079
11 0-110 0-167 —-0-181
i2 Q- 256 0-072 0-551
13 0-170 0-142 0-078
14 0-181 0-119 0-182

You should beware of attempting to work with ratios in the third column
of the tables above, and summing the ratios before dividing by n, since you
will get the wrong answer. If you insist on working in ratios at this point
instead of log differences they must be “summed” according to the arithmetic
(rather than using logarithms) method of calculating the geometric mean,
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8. Paired t-tests

(Geometric) mean ratio = af[ll(xi/yid]

nfIx1/y1 X x2/y2 %X X3/y3 X . . . %X Xnfynl.

(Il represents the operation “multiply the terms”, just as the more
familiar & means “sum the terms”.>

Working with logarithms is easier, and retains the concept and actuality
of working with the “differences between pairs”. It also means that the same
program can be used on a computer or calculator, substituting logarithms of
data for the original data when testing for a ratio different from 1:1 or 1l:r,
if you have some reason for testing this alternative.

8.5 A Simple Example

Two on-filter samples are to be analysed by direct methods, X-ray
diffraction and infra-red absorption. The analysed masses of quartz on the
filters by these two methods are 30 and 22 mg for the first filter and 32 and
26 mg for the second. The differences are 8 (30-22) and 6 mg (32-26). The mean
of the differences is 7 mg and the SD 1:414 mg. The SE of ¥ is 1:414 and
teale = 7, with 1 DF. The (iwo-tailed) tabulated value of t at 5% and 1 DF is
12:-706, and on this slender evidence it can be said that the mesn differences
are not significantly different from zero. It might give us Jjust a little
confidence to carry on with a full-scale comparison between the two snalytical
methods.

8.6 When Statistics are Unnecessary

Over twenty years ago the following personal dust concentrations were
measured using personal samplers worn by two fettlers in an ironfoundry. The
men operated with the same tools on the same castings and, by mutual
agreement, fettled the same number of castings each day. As can be seen from
Figs 8.1 and 2 the work was done without local exhaust ventilation, more or
less in the open, on trestles and blocks.

Their dust exposures (in mg/m3) were

Fettler “A” Fettler "“B”
Respirable dust 4-23 1:45
Respirable quariz 0-694 0-192
Percent quartz
in resp. dust 16 13

The concentrations are quite different, although the work, and the way it
is done, is the same. The quaritz contents are the same, so the cleanliness or
otherwise of the castings does not seem to be important. To explain the
difference in respirable dust and quartz concentrations the records made on
site must be consulted, in this case the photographs. These remind the
investigator of what he saw on site, that Mr. “A” was a short man, who was
bent so close to the work supported on relatively high blocks that he felt the
need for eye protection. On the other hand Mr. “B” was tall and an arthritic,
(notice the wrist bands, once thought to be a useful prophylactic) standing
upright, working on trestles and much further away from the dust source (and
hence in no need of eye protection!). Even had there been a week’s results for
both men available for statistical analysis they would never have explained
the reason for the differences in the concentrations.
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8.7 Reference

1 ALLEN, J., BELLINGER, E.G., and HIGGINS, R.I., (1981) “A full shift
true breathing zone air sampler and its application to lead workers”, Proc.
Inst. Mech. Eng., v. 195, no. 25, pp. 32b—-328.

€BCIRA ©BCIRA

Fettler "A" Fettler *B"

Figure 8.1. Fettlers in an ironfoundry. (See text for discussion)
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9 F-ANDT-TESTS

9.1 F-test, and t-test on Means for Small Samples

The application of the unpaired t—test to the difference of the means of
two sample sets of data is rether less subtle than the paired t-test, since
the data differences are not tested in pairs, but the test is only applied to
the difference between the means of the two samples. On the other hand, since
the data are not paired, the samples do not need to be of the same size.
Although it may not be the best statistics, you could still apply the test
discussed in this Chapter to a difference between means of two sets of data
where one, or possibly more, result had been lost. This could arise due to the
caprices of occupational hygiene sampling in a large experiment originally
designed for a paired t—test. In such cases you should at least be honest, and
state which statistic you have used and why, rather than simply report that “a
significant difference was (or was not) found between the two sets of
results”.

The test is in two paris — the F-test (or Variance Ratio Test) followed
by the t-test. The F-test is necessary since the application of the t-test
assumes that the two data sets come from populations with the same (or
similar) standard deviations, and hence variances. The means of the two
populations may, of course, differ, and the t-test is applied to detect
whether this difference between the means is significantly different from
zero. This is the “null hypothesis”, although the test can be modified to test
for a difference other than zero, the null hypothesis then being that the
difference between means is not different from the proposed one.

In the variance ratio test (F-test) it is implicit that the populations
from which the two samples are drawn are normally distributed. This is usually
the case for laboratory measurements, such as enalytical resulis by two
methods, and in workshops when measuring the diameters of turned components
coming from two lathes. It is this usualness which perhaps allows the frequent
application of the t-test without first performing the F-test.

An alternative test is used when the sample sizes are large, but the
small sample test is the only one considered here, since this is the most
likely situation you will meet when handling occupational hygiene data.

9.2 The F-, or Variance Ratio, Test

It is quite common, although not correct, simply to apply the t-test to
the difference of the two means. It is always worih while applying the F-
(variance ratio) test to the data before the t-test is applied.

512

F, the variance ratio, =
822

[9.11
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where the groups are, by convention, arranged so that si1 (the sample, or
“{n-1)" standard deviation) for the first group is greater than sz, so that F
is greaster than 1. The closer F is to 1 the closer are the variances.

This is the optimum condition for applying the t-test, although
statisticians assure us that the t-test is a “robust” test, and can be applied
with some degree of success (rather than “confidence”) even to sets of data
with widely disparate variances, hence the common omission of the F-test.
Nevertheless it would seem only prudent to remember to apply this test to data
which ‘might be from quite different distributions. If both the F- and t-test
are incorporated into the same calculator or computer program this will ease
the labour of the calculations and at the same time ensure that “a result”
isn't being churned out for the t-test alone without regard to the
applicability of the test to the input data.

Tables giving the critical values of the F-distribution are available for
deciding the significance of F, wusing m1 -1 and nz2 - 1 C(numerator and
denominator) as the degrees of freedom. The significance can also be computed,
as in the OH Program “F&T TESTS"”, based on a routine given by Lee and Lee (see
bibliography, Chapter 1).

If no tables are available to determine the significance of F, nor a
computer program with the necessary routine, the two values of F from the raw
data and the logged data will give an indication of the more likely
distribution to which both belong (normal or lognormal), since the value of F
for the more likely distribution will be the nearer to 1. This will indicate
to which distribution the t-test should be more properly applied. This use of
the F-test is not considered in any text books known to the author, snd is not
as good a test as applying probability plotting, correlation and regression to
both data sets separately for both distributions. Perhaps the F-test is more
of an indicator for the distributions of both groups considered together,
rather than a test for either group considered separately. Obviously the
F-test is applied to both distributions simultaneocusly. This degrades the
information in the data, much as histograms do (see Chapter 6).

Although it is customary to ensure that F31, it is not absoclutely
necessary, since the significance of F is the same as for 1/F.

9.3 The t—test on Differences of Means

For unpaired data the statistic of interest is IX1 - %21, which is the
modulus or absolute value (ABS on a computer) of the difference between the
means, calculated as usual from the values of the two series, 1 and 2.

The estimate of the population variance, sc2, is also needed

5124{ny — 1) + s22{(ns - 1>

(n1 -~ 1) + (np - 1) t2bJ

Sc? =

The SD of the difference of the means, sd is also calculated, using se2
from [9.2]1.

sd = scf E(nt 4+ n2)/(ninz)1] [9.3al
= saf(1/ny 4+ 1/n2) [9.3hb]

The significance of the difference between the means is measured by the
ratio of the difference to its 8D, i.e.
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t = J%1 - Rel [9.41
sd

This calculated value of t is compared with the value in the t-table for
a chosen significance level (two-tailed) with (n1 + n2 - 2) degrees of
freedom. As with the paired t-test the higher the calculated value of t, the
greater is the significance of the difference. For mi = 4, n2 = 5, DF = 7, and
a calculated t value of 1-895 the conclusion would be that the difference
(between the means) was not significant, since there is a 10% probability of
such a difference arising by chance. A calculated t value greater than
5:4, however would be significant, since such a value (from IXi - R2!), would

have less than 0+1% probability of arising by chance.

9.4 Examples of the F- and t-tests

As usual only the various marker data are given to help you to ensure
that you are on the right track when you work the examples through.

Example 1. Two methods of injecting analytical samples of 6-chloro-o-
cresol into a mass spectrometer were tried to see if there were any difference
between them. The analytical results were compared, using the F- and t-tests,
since the number of analyses were different in each group, and the analyses
are not, in any case, paired. (6-chloro—o-cresecl isn’t a very common chemical,
and is never wused in disinfectants, despite its relationship to the
chlorinated phenols. Its potential for tainting food is measured in ppb. and
it can be absorbed from the air at these levels into food).

The results were as follows:-—
Method 1. 777, 741, 7-84, 7-86, 7-63
Method 2. 7:57, 768, 7-87, 7-65, 7-60, 7-67.
The arithmetic means for Methods 1 and 2 are 7-7020 and 7-6733, and the
standard deviations are 0:186% and 0-10562.

The variance ratio, F, from [{9.1]1 is 3-142 (Variance = SD2). From the
F-ratio critical value tables, this is not significantly different from 1 at
the 10% level. In fact p = i2-1% so it is safe to proceed with the t-test.

From [9.4] the caleculated value of t is 0-322, which agein is not
significant (p = 75:5%, for 4 + 5 = 9 DF) and we can assume that either method
of sample injection into the mass spectrometer is as good as the other. More

formally the difference between the means is not significantly different from
Zero.

The following sections will help you to trace alternative routes of
analysis. If the logs of the data are tested in the same way the Geometric
Means are 7-7002 and 7:6727, and the GSDs 1-:0247 and 1:0137. The variance
ratio of the log-variances (not the GSD2) is 3220, still not significant, and
t is 0+307. You should notice that, like the paired t-test for lognormally
distributed data, this is testing for (log GM1 - log GM2) = 0. That is testing
for log (GMi/GM2) = 1 since log 1 = 0. So in this case the ratio between the
geometric means is not different from unity.

The two sets of data have been analysed using the probability plot
correlation test. Arithmetic and geometric means and standard deviations are,
of course, as above. For Method 1 the correlation coefficients are
rnor = 0:941, rinor = 0:939, and for Method 2, rxor = 0-912, rimer = 0-914.
Because there is so little difference between the respective correlation
coefficients for each method (even if Method 2 looks more lognormal than
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normal, if we are to believe the third place of decimals) it seems hardly
worth while making much more of it.

Example 2. Two urea/formaldehyde resins used for binding foundry sand
were suspected of evolving different concentrations of formaldehyde during
mixing. An experiment was devised to test this. The results for Resin 1 were
11-82, 12-01, 13-17 and 1393 ppm in the test rig. For Resin 2 the results
were 11-26, 10-82, 10:82 and 9-88 ppm. The means are 12:73 and 10-70, but is
the difference in means significantly different from zero? The F-test for the
arithmetic data gives 2-937, a difference in variances which could occur by
chance with 20% probability, so the t—test can be applied to the difference of
the means. This gives t = 3:531, which is only 1-23% probable if the
populations from which the two formaldehyde concentrations were drawn had the
same variance and mean. The difference between the means is significant at the
5% level,

The tests on the logged data suggest that they will be just slightly more
reliable than for the arithmetic data (F = 1-973, p = 29:5% and t = 3-629,
p = 1+1%), but the difference between the arithmetic and the logarithmic cases
is trivial. Omitting the test on the logged data would hardly embarrass
anyone, although in transposing the results to foundry practice it is possible
that knowing a ratio of formaldehyde emissions might be more useful than
having a simple arithmetic increment, which might allow us to say that we
would expect a reduction of x% in formaldehyde emissions during mixing by
using one resin rather than another (but hardly worth while in this case).

Example 3. A worker in an ironfoundry laid cores in moulds. Four full-
shift personal samples were taken in each of two successive weeks for cores
coated with a) a siliceous core wash in the first week, and b) a non—siliceous
core wash in the second. The daily concentrations {(mg/m3) of respirable dust
(RD) were:-

Siliceous core wash (5 1-11, 2-44, 0-78, 0-66

Non—-siliceous core wash (N t-28, 1-13, 1-08, 0-99,
and of respirable quartz (RQ):-

Siliceous core wash (5> 0-401, 04183, 0-190, 0-126

Non—-siliceocus core wash (N) 0-023, 0-025, 0-:039, 0-024

The samples are not paired (except by chance by day of the week). The question
is "has the use of non—siliceous core wash improved conditions?" and apart
from the answer “Obviously”, it will be of some comfort to show this
statistically. Not all cases will be as clear—cut.

Knowing what we do of occupational hygiene data (“they are always
lognormally distributed”) it might be prudent to start by testing for the best
fitting distribution.

For the RD S samples rwor = 0-900, and rinor = 0-951 and

0-983, and rinor = 0-989.

for the RD N samples ryxomr

Since rivoRr > rNOR it looks as if we will be using the logs of the data and
testing for the ratic of the geometric means not being different from 1,
rather than the difference of the arithmetic means not being different from 0
for the respirable dust concentrations.
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I
il

The data give GMrD S 1-0866, GSDmp s 1-7882 and
GMrp K 1-1152, GSDmp w 1-1130.

F (for the log variances) = 29-474, a probability of 1% that the
difference in variances could have arisen by chance—the t—test can be applied
with only limited confidence.

t (for means of log data) = 0-088. If the parent populations have the
same mean and variance this difference has a 93-3% probability of occurring.
There is no difference between the geometric means by the ratic test.

If you work through the data, this time assuming that they are both
normally distributed, you will find that

the data give AMRp 5 = 1-2475, ASDrp 5 = 0°8175 and
AMRD N = 1-1200, ASDmp v = 0-1214.

F = 45:355, greater than F for the logged data, some confirmation that we
were wiser to work with logs. t = 0-309, not quite as good as for the logged
data, but, bearing in mind the robustness of the test, enough for us to say
that the difference between the means is still not significant. But in both
cases F is getting rather far from 1 — both the arithmetic and geometric
variances of the two parent populations are becoming uncemfortably different,
not perhaps invalidating the t-test but meking it at least risky to apply.
Even so we are reasonably sure that there isn't a real difference from one
week to the other for the mean respirable dust concentrations.

I
I

The case for the respirable quartz concentrations is more interesting.
Using the same approach

for the RQ S samples ruor = 0-899, and rriNcr = 0-944 and

for the RQ N samples rnop = 0-846, and riwor = 0-862. Again we probably
have two lognormal distributions to deal with,

and GMpq s 0-2047, GSDmg 8 1-6242
GMro n = 0-0271, GSDra w 1:2782.

Dealing with the logged data, F = 3-906, close to 1, p = 14:6%, the (log)
variances are not significantly different and we can go ahead with the t-test
with confidence. t = 7-442, (p = 0:03%) with very little chance of the ratio
between the geometric means being 1. The geometric means are significantly
different.

It
li

Working through the arithmetic data F = 256-316 (p = 0-041%). The value
of F is so high that the two sets of data are most unlikely to come from
parent normally distributed populations with similar variances, and the t-test
ig probably not valid — it might be robust but even with t = 3-26 (p = 1-73%>
the evidence is much stronger for a ratio between the geometric means being
different from 1 rather than the difference between the arithmetic means not
being zero. The use of a non-siliceous core wash has certainly reduced the
airborne respirable quartz concentration, and the reduction is best shown as a
ratio, rather than an arithmetic reduction.

Remembering that at the time of the investigation the Exposure Limit for
silica-containing dusts was

10 /3
% quertz + 2 me

EL =
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9. F- and t-tests

the ratio RD/EL can be calculated, which for concentrations below the EL
should be <1. Again probability plotting and the F- and t-tests were used to
show that

12 the distributions for 5 and N are both lognormal

2) the F-test is satisfactory for lognormal data (F = 11-6, p = 3-7%

3> the t-test shows that the ratio of the geometric mean of RDg/ELs to
RDN/ELn is different from unity (t = 6-395, p = 0-069%)

4) the value of F for the arithmetic (normal) case is 301:58, meking it
difficult to justify applying the t-test to the difference between the means
of RDs/ELs and RDN/ELN. In fact t = 3-259, p = 1-73%, much poorer evidence
than that provided by testing the difference between the log-means which is,
of course, the log of the ratio of the geometric means.

Example 4. An interesting case concerns Cadmium in urine from workers in
two departments at the same works. In the first group of 20 men the Cd in
urines were

11 11 1! 3! 3: 4, 4, 4, 5, 6, 6, 6, 7, 7, 9, 9, 10, 11, 24; and b6.
In the second group of 31 men the results were

1, 1,1, 14,1, 1,1,2,2,2, 3,3, 3,3, 3, 4, 4, 4,5,5,5,5, 5, 6,
6, 6, 7, 10, 12, 13, and 18.

These two sets are so obviously different, with means of 8-85 and 4:61,
that the confirmation, using the t-test, is almost superfluous, or is it?
Immediate calculation of t gives 1-8, with (20 + 31 - 2) = 49 degrees of
freedom, giving p = 7:8%, so the difference 1is, in fact, not wvery
significantly different from zero, and certainly not at the 5% significance
level.

Applying the full F- and t-tests to the arithmetic and the logged data
gives

Arithmetic:— F = 9-475, p = <0+01%, extremely unlikely that the
variances are the same (the samples coming from very different populations),
and t = 1-8, as above, but with very 1littie justification for applying the
test.

lLogarithmic:— F = 1:409, p = 19'6%, indicating that it is highly likely
that the variances of the logged data are the same, and t = 1-826 (with GMs of
5:35 and 3+34). Thus t has about the same significance as before, p = 7-4%,
(except that there is now much more justification for applying the t-test) and
the chance that the ratio of the GMs is different from 1 is not high, with
about the same significance as the difference of the means.

Armed with hindsight the data can be tested for the best fitting
distribution, using the techniques described in Chapter 6. We find the
Filliben probability plotting correlation coefficients for the Cadmium—in—
urine to be

Set 1, reor = 0726, rinor = 0-964 and

Set 2, rnop = 0-893, rinor = 0-971, confirming that both sets of data are
indeed lognormally distributed in this case.

These F- and t-tests are quite interesting (perhaps disappointing), since
they show that the arithmetic difference of the means is not significantly
different from zero at the 5% level (which is notf what intuition suggested)
and, at a very similar level of significance, the ratio of the (geometric)
means is not different from one. But lurking behind it all are the F-tests
telling us that the arithmetic variance ratio is significantly different from
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9. F- and t-tests

1, casting a shadow over the applicability of the t-test to the difference of
the arithmetic means, while the F-test on the logged data suggests that we
would, in any case, be better off, as statisticians, looking to the ratio
test,

What this means in occupational health or hygiene terms remains to be
decided, but there may be more significance in an increased ratio of Cd in
urine between the departments than a simple arithmetic difference. We can
always say that although the statistics do not support the proposition that
the first set give a statistically significant higher AM or GM than the second
set, there is, perhaps, other supporting evidence to be examined such as
Bz-microglobulin, Cd in air results, and examination of work practices and
processes (never to be under—estimated or ignored). Common sense might help,
as would the application of a test for the better fitting distribution before
embarking on the F- and t-tests, as described in Chapter 6.

9.5 Some Concluding Remarks

It is perhaps fortunate that in the examples discussed above the
distributions for the data sets in each pair have been the same—either normal
or lognormal (except for a trivial disparity in the 6-chloro—o—cresol case).
You should notice that the non-normal case is not discussed in text books (it
being assumed that the reader will only meet normally distributed data!), and
although the extension of the use of the F- and t-tests to the lognormal
distribution in particular is valid, (as it was in the paired t-test if we
accept that we are now testing for the ratio of the GMs being different from
1) there will be days when one set of the two results is normally distributed
and the other lognormally distributed. This would be shown by applying the
probability plotting test before the F-test, and not by appling the F-test to
the arithmetic and logged data. It is hard to say what the F-test would
suggest in such a case. Should we test the sets for the difference or the
ratio between the appropriate means? It would seem best to first test for the
best fitting distributions and then test, using both types of F- and t-tests,
and report results for both the normal and lognormal t-tests, commenting on
any ambiguities, and leaving the problem of interpretation there.

5G




R R e

B

10 SOME FORMULAE AND USEFUL NUMERICAL APPROXIMATIONS

10.1 Purpose and Sources

The purpose of including these formulae and numerical approximetions is
to assist hygienists to become better acquainted with the numerical
manipulation of statistics and to overcome the problem of royalty fees which
need to be paid if statistical tables are reproduced. The statistical tables
required to carry out all the operations described in this book (except for
the significance table for Filliben’s probability plot correlation
coefficient) are, in any case, available in any respectable statistics book.

The OH Programs which are available from H & H Scientific Consultants Ltd
are all supported internally with routines which eliminate the use of
statistical tables—that is what computers and calculators are for. The list of
formulae is obviously incomplete but covers the main ones which can be applied
to the statistics described in this book. The routines are either exact or
approximationg of sufficient accuracy. You may find others but before using
them you should be sure that they are sufficiently accurate. For example
alternative routines are available for converting confidence (or significance)
and DF to Student’s t, but these, and indeed the one quoted become
increasingly inaccurate at low probabilities and low DF. Also Dhanoa (see
Reference 7, Chapter 6) gives routines for calculating the significance of
Filliben’s PPCC, and of Grubbs’ test for (single) outliers.

Many of the routines given here and elsewhere are based on the use of
polynomial approximations.These are best evaluated whenever possible using
“Newton's method” <(usually known as Horner's rule). This applies to both
calculators and computers. It avoids the ewvaluation of powers and is both
quicker and more accurate. For example

(at + bt2 + ct3 + dt4 + ets)
is evaluated as
(({Cet + At + Xt + bXt + adt.
The principal sources used in this compilation are:—

Abramowitz, M., and Stegun, I.A. (10th printing 1972) Handbook of
Mathematical Functions, with Formulas, Graphs and Mathematical Tables,
National Bureau of Standards, Applied Mathematical Series 55, U.5. Dept of
Commerce, USGPO, Washington DC.

This is rather more than a handbook, and repays deep study by anyone
wanting to explore the application of some arcane mathematics to computing.
For example you might choose to use a continued fraction to calculate the
normal integral, rather than the polynomial approximation given below.
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10. Formulae and Approximations

Lee, J.D., and lee, T.D., Statistics and Numerical Methods in BASIC for
Biclogists (out of print) and Statistics and Computer Methods in BASIC, both
1982, Van Nostrand Reinhold Co. Ltd., Wokingham. Both books are valuable for
statistics and BASIC programs and both contain the routines used in OH
Programs under a copyright arrangement. The sources are given here, but not
the BASIC routines.

Cooke, D., Craven, A.H., and Clarke, G.M. (1982) Basic Statistical
Computing, Edward Arnold, London. This book contains some more useful BASIC
routines, although deeper exploration will show that a few of the algorithms
are inferior to those in Lee and Lee, or which can be formed from formuilae
given in Abramowitz and Stegun. If you need the routine to generate random
normal deviates you will find that the one given in the book is not correct,
but the correct version is given in Section 10.2.9.

Two routines in BASIC are incliuded in Appendix 10A to illustrate the
point that there is nothing to fear in using these approximations in programs.
Appendix 10A also lists OH Programs which are associated with the statistics
described in this book,

10.2 List of Formulae and Approximations

10.2.1 Normal Integral.

10.2.2 Inverse Normal Integral.

10.2.3 Probability from Student’s t.

10.2.4 Student’'s t from probability.

10.2.5 Probability from F (variance ratio’.

10.2.6 Filliben probability plotting position.

10.2.7 Log factorial (log T" function).

10.2.8 Arithmetic and logarithmic parameters of lognormal distribution.
10.2.9 Random normal deviates.
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10. Formulae and Approximations

10.2.1 Normal Integral (Area under the Normal Curve)

Z(x) = Ordinate = 1/4(2n).exp(—¥Ktx2)
P(x) = Area to left of x Z4x
Q(x) = Area to right of x

P(x) + Qx> = 1
P{x>

Q(x) = 0-5 - ?T%ET f:exp(—Xx’)dx

P({x) = ?{%;c")' ffixp(%x’)dx L !

-x-3 -2 -1 %] 1 2

To derive P(x) from x use this approximation

a = 0-319381530 b =—0-3b6563782 c = 1781477937

d =-1-821256978 e = 1-33027442¢ r = 0-2316419
_ 1

t= T+ rx

P(x) =1 - ZGodGat + btz + ct3 + dt4 + ets)
Z{(x) is ordinate at x, see above.
Error less than 7-5x10-8. Source: Abramowitz and Stegun, 26.2.18.

10.2.2 Inverse Normal Integral (SD from p)

To derive xp from Q(xp) = p

a = 2-515517 b = 0-802853 c = 0-010328
d = 1-432788 e = 0+189269 f = 0-001308
t = fIn(i1/Q2)

=t - at bt + ct2

1+ dt + et2 + ft3
Error less than 4-5x10-4, Source: Abramowitz and Stegun, 26.2.23.

10.2.3 Probability from Student’s t

To derive p from t and DF use the BASIC routine from Lee and Lee.

10.2.4 Student’s t from Probability and Degrees of Freedom
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To derive t from p (or confidence or significance?

If ACtprIDF) = 1 - 2p and Q<{xp) = p then
g1{xXp) g2lxp) g3(xp)

tor = xp + Thp (DF)2 s T
g1lx) = %—(x3 + x)
1
= — s 3
g2(x) = g (5x5 + 16x3 + 3x)
1
= e—— 7 14 3 -
galx 384 (3x7 + 19%5 + 17x 152
1
g40X) = goios (799 + 776x7 + 1482x5 - 1920x? - 945%)



10. Formulae and Approximations

Remember to use Newton'’s method of evaluating these polynomials and watch
the signs of the coefficients. This is probably the slowest routine to run on
a computer (and too big for most programmable calculators) not least because
it must start with the additional routine to convert p to SD, the xp term in
tor (see Section 10.2.2).

Source: Abramowitz and Stegun, 26.7.5.

A routine in BASIC is given in Appendix 10A with exact values of t for DF
=1 and 2.

10.2.5 Probability from F (variance ratio)

To derive p from F and DF use the BASIC routine given by Lee and Lee.

10.2.6 Filliben’s Probability Plotting Position

Filliben plotting positions, as percentage probabilities for ranked data
points (rankits),

n = number of points, i = order, i.e. 1st, 2nd, ... ith, ... nth.
% plotting position for nth = 0-51/» x 100
1st = 100 — nth
remaining ith = 100 x (i - 0-3175)/(n + 0-365).
Apart from the arithmetic meen, this is perhaps the easiest statistic to
program. Source: Filliben, Reference 1, Chapter 6.

10.2.7 Log Factorial (Log I" Function)

This approximaticn, in the log or natural form, is mach faster than a
FOR-NEXT BASIC lcop, except for small n!. It is obvious that some computers
will overflow sooner than others if n! is calculated using a loop or the
approximation, which is very accurate. The log form of the approximation is
used in the program SAMCON (see Chapter 5) and in Fisher's Exact Test {not
dealt with in this book). Log n! will not cause overflow problems, but you
should be decide whether you are going to use natural or common logarithms.
The formula works for either. The form below is for natural logarithms.

n! =T'¢n + 1), so by making z = n + 1 then In n! = 1ln T'(z) and

in I'(z) =~ (z-¥).1ln 2z ~ z + ¥In(2w + 1/(12z> - 1/(360z%)
+ 1/¢126025) ~ 1/¢(1680z7)>

Source: Abramowitz and Stegun, 6.1.41.
A routine in BASIC is given in Appendix 10A for common logarithms.

10.2.8 Relationships Between Arithmetic and Logarithmic Parameters for a
Lognormal Distribution

This table is taken from Appendix M, Reference (2), Chapter b. The
conversions are for the population and they can lead to significant errors if
applied indiscriminately to sample data which are only approximately
lognormally distributed. In particular it is better to use the MVl estimators
for the arithmetic mean and standard deviation than to apply the conversions
indicated by *, although their judicious use can often be helpful in obtaining
an insight into the distribution.
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10. Formulae and Approximations

¥ is the arithmetic value of a point on the distribution, y is its
natural logarithm, ln x (base e), npever common logarithms in this instance.

p = true AM of x distribution (not of sample)
o = true ASD of x distribution (not of sample)
#r = true AM of y distribution

o1 = true ASD of y distribution

GM = Geometric Mean of x distribution

G8D = Geometric Standard Deviation = exp{ou)

Given To Obtain Use

i GM exp(pi)

K,c GM n2/ypz + o2

o1 GSD explal)

B,C GSD exp/E1n{l + o2/p2)1}

11,01 TR exp(pl + ¥o12)

GM, o1 T (GM exp(ko12}

H1,01 G * J{lexp(2py + 012> 1lexplor2) ~ 11]
GM, o1 o * J[(GM 2[exp(o12) Hexplo12) — 11]
GM 18] In(GM

I3 | M1 in p - %o12

iL,01 GM exp(in p - ¥o12)

G5D o1 In(GED

[1 ¥ ol S1n(l + c2/p2)1

* To obtain p and o it is better to use the MVU estimators on your data than
to assume the sample arithmetic parameters = population AM and ASD.

10.2.9 Method of Generating Normally Distributed Random Data

There is an alternative method due to Marsaglia and Bray (see References
2 and 3, Chapter 2) of generating normel deviates which can be used to
simulate normally or lognormally distributed data. This method avoids the
conversion from probability to deviate, and in fact generates pairs of normal
deviates simultaneocusly. As with all random number generators the independence
of successive random numbers is assumed. Be sure that you do not repeatedly
generate the same series — use a RANDOMIZEing function to sow new seeds.

The steps of the method are as follows

1. Generate two random variables, p1 and pz2, from the uniform
distribution O¢pi,p2¢1.

2. Calculate W1 = 2.p1 - 1 and W2 = 2.p2 — 1.

3. Calculate W= Wi2 + W22, If W>1 return to step 1.

4. Calculate C = SfI1-2.(1n W)/WI1.

5. Calculate V1 = C. Wi and Vg = C.Wz2. Vi and V2 are the required normal
deviates.

6. Return to step 1 for more pairs of random deviates.

These normal deviates can then be entered into the linearized equation
for the normal cumulative curve as in Chapter 2 to create as many pairs of
random variates as the experiment calls for.

The “quantization” effect discussed in Chapier 2 will not be so apparent,
if at all, when using Marsaglia and Bray's method of generating random normel
deviates using a calculator which gives uniformly distributed random numbers
to only three places of decimals.
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Appendix 10A

The routines in 10A.1 and 10A.2 are written in Sharp PC1500 BASIC. You
will be able to judge how easy they might be to translate to your machine’s
dialect or alternative language. They are taken from OH Programs, 10A.3.

10A.1 Conversion of Significance and DF to Student’s t

(From Section 10.2.4). The value of PI (m) is assumed to be resident,
otherwise it must be assigned numerically or from PI=ATN(1)¥4 (in radians}.
Confidence = 1 — significance.

800 INPUT "INPUT CONFIDENCE LEVEL >50% ";P:IF P<50 THEN 800
801 INPUT "DEGREES OF FREEDOM ";I

810 Q=P/100:Y=(1-Q>/2:GOSUB 1020:REM I=DF

820:

830 PRINT "t =";T:STOP

1010:

1020 REM CONF —-> t

1030 IF I=1 THEN T=TAN(Q¥PI/2):RETURN:REM t FOR 1 DF
1040 IF I=2 THEN T=Q/SQR(1-Q*Q)>*SQR(2):RETURN:REM t FOR 2 DF
1050 REM P->8D

1060 Q=5QR{-2*¥L0OG(Y))>

1070 V1=(.010328%Q+.802853)%Q+2.5156517

1080 V2=((,001308%Q+. 1892692 %Q+1.432788)#Qt1

1090 Y=Q-Vi/V2

1100 Y=Y#Y:REM START OF SD -> t

1110 Vi=(¥Y+1)/4

1120 V2=((5*¥Y+16>¥Y+3)/96

1130 V3=(((3¥Y+19)¥Y+17)¥Y-15)/384

1140 VA=((((793Q+776)¥Y+1482)%Y-1920)¥Y~-945) /92160
1150 T=SQR(Y)*®({((V4/I+V3)/T+V2I/T+VID/I+1)

1160 RETURN

Exact conversions for DF 1 and 2 need only one line each and appear at
1030 and 1040 after which you RETURN to the program. These two lines are based
on series expansions given in Abramowitz and Stegun, 26.7.3 and 26.7.4 and
will satisfy all but the most fastidious demands for accurate values of t at
the remaining lower degrees of freedom and small o (significance). You will
notice that the routine for higher degrees of freedom needs to start with the
conversion of p to SD, using the approximation in Section 10.2.2 above.

10A.2 Log Factorial Approximation (From Section 10.2.7)

1000 Q=Qt+1:REM ! -> GAMMA

1010 IF =t OR Q=2 THEN Q=0:RETURN:REM 0! and 1!

1020 IF Q=3 THEN Q=LOG10¢(2):RETURN:REM 2!

1030 IF =4 THEN Q=LOG1i0(6):RETURN:REM 3!

1040 IF Q=5 THEN Q=L:0G10(24):RETURN:REM 4!

1050 S=(Q-.5>*LOG10<(Q) : T=(LOG10(2%PI)>/2

1060 U=(Q-1/(12%Q)+1/(360%Q13)-1/(12602Q15)+1/(1680¥Qt7>2LOGI0(EXP(1))
1070 Q=5+T-U:REM Q=log %!, base 10

1080 RETURN
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The subroutine is entered with Q as the integer for which the log
factorial is required and is left with Q = logi10Q!, the required value. You
will notice the quick exits at 1010-1040. You could add a few more if you
wish. Or you could use a loop for summing the logarithms of the first few
factorials before forming the T" function at 1000 (IF Q<14 THEN FOR I=2 TO Q,
say) and then RETURN from the loop, since the summing loop for logs will be
faster than the approximation below some factorial wvalue, log(i3!) on one
computer. If it matters.

10A.3 Occupational Hygiene Statistics Programs

BOHS, 1983, Technical Guide Series No. 1, “Statistical Analysis of
Monitoring Data by Microcomputer”, (£2.00>, 1983, The BOHS Office,
1 St Andrew’s Place, Regent'’'s Park, London MNW1 4LB. Presented as a listing
with commentary this program accepts OH data and applies Filliben’'s
probability plot test to them. Output is limited.

OH Programs

These programs are in BASIC, written for a Sharp PC1500, with printer/
plotter. Some have been translated to BBC BASIC and Mallard® BASIC for the
AMSTRAD PCW8256/8512. They can be obtained from H & H Scientific Consultants
Ltd. P.0. Box MT 27, Leeds LS17 8QP as listings, with cassettes for the Sharp
PC1500, either as ASCII files on Sharp or BBC cassettes for loading into BBC
machines, or Sharp ASCII or PCW ready—to-run on 3" CF2 discs for the PCW. Some
versions have not been translated.

1 MEANSETC For the calculation of arithmetic and geometric means, and
from an input confidence level it outputs the confidence limits. Accepts
individual or grouped data input.

2 MVU Demonstration program and in-depth discussion of mvu estimators
for the arithmetic mean and 5D of lognormally distributed data.

3 RBNDLNOR (Sharp only) Plots random lognormal output as a pseudo—sirip
chart recorder output, with various population and sample statistics.

4 SAMCON (NIOSH Sample size) Relates group number (N>, sample size (n),
one of sample in top T# with confidence C%. From input of N, n, and T% outputs
C%, or from N, T% and C¥% ocutpuis sample size, or will output table of N and n
for input T% and C%.

5 FILPLOT Takes individual data points, ranks them, allocates plotting
positions, performs correlation and regression for normal and lognormal
distributions, and offers choice of which to work with. Outputs arithmetic and
geometric means and BDs (and MVU estimates of arithmetic mean and 3D if
lognormal), values  at input percentiles, correlation coefficients,
instructions for plotting on commercial probability paper, 95% confidence
limits of mean, 90% confidence limits of highest and lowest wvalues from
another sample from the same distribution, and table for plotting the 80%
confidence envelope for another sample. Opticon of graphical output on Sharp
and PCW (or Hewlett-Packard plotter), with auto-ranging and capability of
changing y—-axis range on the screen of the PCW before print-out. Rerun of data
for other distribution if required.

6 PAIREDT Paired t—test for differences and ratios.
7 FANDTTEST F- and t-test for difference and ratio of means.
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10. Formulae and Approximations

8 RNDTTS Random timetables for 10 minute sampling periods within a
shift. Accommodates 24h clock, mid-shift break and night shifts. Any (sane)
number of samples can be called for, and as many timetables as required.

Also available
CHICUM, a %? best fit test for cumulative normal or lognormal data.

CHISQU, a %2 program including continuity correction and Fisher's Exact
Test, for observed or observed and expected data.

ZERCON, a form of FILPLOT which will accept zero data for certain
applications.

HISTOGRAM, a demonstration program to give random uniform, normal, or
lognormal grouped data for histograms, group sizes based on Sturges’ rule, but
this can be changed. Can also be run to accept real data which can then be
tested using CHICUM.

All programs are internally supported by the necessary statistics — no
tables are needed. No filing facilities for data storage or input are included
in the programs — these you must work out for yourself, since they will be

language and system dependent.
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11 SOME EXPLANATIONS

11.1 Background

While it is always risky to make assumptions there comes a time when this
must be done. Certain assumptions have been made regarding the extent of your
knowledge of statistics. No excuse is offered for presuming that you will be
able to find out for yourself any topics in the book where this assumption is
invalid. It was not the author’'s intention to go over the ground that is more
than adequately covered in many other books, such as those listed in the
bibliography to Chapter 1. The intention of the book is to bend the use of
statistics towards occupational hygiene and show that hygienists can, and
should, apply statistical tests to their data. However a few topics deserve
some explanation, and these are addressed below.

11.2 A Reminder on Logaritims

If you are at home with common and natural logarithms, and in particular
with their appearance on calculators and computers, as opposed to tabulated
values, you can happily omit this section.

The logarithm of a number is the power by which its base must be raised
to give the number. In
a = bx
a is the number whose logarithm is required, b is the base, and x is the
power, or logarithm, to which the base is raised. An alternative expression
which rearranges a = bx is
x = logarithms(al
All numbers >0 have logarithms, but the logarithm of zero is —®. Negative
numbers do not have logarithms. Logarithms of numbers greater than one are
positive ¢ >0), the logarithm of one is always zero whatever the base, and
those of numbers less than one are negative ( <0). Any positive number greater
than one can be used as the base. The bases most usually met are 10 (for
common logarithms) and 2-78182818... (represented by the symbol e, for natural
or Napierian logarithms, or even exp, where it is followed by a complicated
exponent, as in exp(ln p - ¥m?). Historically the *“exp x" form is more
corract than “ex” to the extent that “expio x" was considered the “correct”
way of expressing 10 raised to the power Xx.

The phrases “taking logarithms” and “raising to the power of” are these
days not uncommonly replaced by the words “logged” and “exponentiated”, this
usage presumably following the adage that “there ain’t no noun that can’t be
verbed”, although hygienists with data loggers attached to various sampling
instruments should take care to distinguish between the two uses of “logged”.

If you are unsure of mantissas and characteristics perhaps the following
will help to clear up any doubts you may have on the presentation of
logarithms on a calculator or computer. The logio of 2 is given in the log
tables as 0-3010, and of 0:2 as 1:3010. The 1 is the characteristic, or
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exponent of 10, and the -3010 is the mantissa. Algebraically the logarithm is
equivalent to -1 + 3010 = -0-6990, which is what a calculator or computer
will output for logio of 0-2. For base e logarithms the characteristic for
numbers less than 1 (but greater than 0) are again negative, but again the
algebra is the same and the calculator gives the “right” answer without mixing
negative (characteristic) and positive (mantissa) values, so that loge 0-2 is
-1-6094 from a calculator, rather than 3:6974 + 0-6932 = 2:3906 from tables,
where 3-6974 = loge 1/10 and 0:6932 = loge 2.

These various methods are used to get the arithmetic and geometric means
discussed above from the following data.

0-03, 0-4, 0-7, 1-2

Arithmetic logio (table) logio (calculator) loge (calc)
0:03 2-4771 -1-5229 ~-3-5066
0-40 1-6021 —-0+3979 -0-9163
0-70 1-8451 —0-1549 -0- 3569
1-20 0-0792 0-0792 0-1823
Totals 2-33 4 (characteristics) -1-9965 -4-5975

+2-0035 (mantissas>
=2+0035 (but this is no help in the next line!)

Divide by n = 4 to get means

2+33/4 (—4+2-0035)/4 ~1-9965/4 ~4+5976/4
1-5009 —0-4991% —1+1494%
Means=0-5825b (AM) =0-:3169 (GM) =0-3169 (GM> =0-3168 (GM)

Note: * are the means of the logarithms.

The final wvalue (geometric mean) in the second column comes from the
table of antilogs, and the last two GMs from the inverse log functions on the
calculator, 10x and ex, or in computer parlance 10tx and EXP(x). The two means
(arithmetic and geometric) and the arithmetic stendard deviation have the same
dimensions as the original data. So that if the data are in mg/m3, then so are
these statistics. It is an error to express the geometric standard deviation
in the same dimensions — it is in fact dimensionless, best thought of as a
ratio.

Logarithms were commonly used to simplify multiplication and division
before calculators and computers became widely available. The logarithms of
the numbers to be multiplied or divided are read from a table, added or
subtracted respectively and the resultant logarithm converted back to a number
using a iable of antilogarithms.

Calculators have the logarithmic functions built in. The natural
logarithm is often shown as “In” and (using the “F”, “upper case” or second
function key} the inverse function (antilogarithm), or ex, can be regained. A
similar double function key “log"” and “10x" serves for the base 10. On
computers which you might use, the BASIC logarithmic functions may be LN (for
In or loge> and LOG (for logio) or perhaps LOG (for 1ln or loge) and LOGIO (for
logio>. Pon’t blame me for the confusion! The antilog functions are invariably
EXP (for antilogs of natural logarithms) and 10t or 10" (for base 10 logs).

As an aside if you have a y* key on your calculator you can confirm that
2-53:2 = 18+7675... Here 3'2 is the logarithm of 18:7675 to the base 2-5. As
a check use the same key to see if 100-30103 comes very close to 2.

Natural logarithms are invariably used in pure mathematics and the
mathematical side of statistics, as in the conversions in Chapter 10. Base 10
or base e logarithms can safely be used in all numerical operations (followed
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by a final exponentiation) discussed in this book. The most likely place
common (base 10) logarithms will be encountered in occupaticnal hygiene is in
sound where the units are decibels. In this case you must use common
logarithms (or you will be in deep trouble!).

Because of the ease of manipulating data using calculators and computers
it is obviously easier to let whatever calculating aid you may be using do the
worrying about the logarithms and sign of their mantissas and characteristics.

11.3 Minimum Variance Unbiased Estimators

There are a number of ways one might suggest for estimating the "average”
or mid-point value of a set of data. For ease of calculation (apart from the
tedium of finding them) one could divide the sum of the extreme values by 2.
Experience (and probably mathematical analysis) however shows that this gives
very variable results when the samples are repeated — the variance is large
and far from a minimum. Other methods might be proposed which could be biased,
either high or low relative to the real wvalue. All these methcds would, in
general be aimed at the estimation of the mean of the population from which
the experimental samples were drawn. The Minimum Varisnce Unbiased Estimator
of the arithmetic mean of a normally distributed population is in fact the
arithmetic mean of the sample.

Similarly when we want to describe the spread of results we should choose
a measure which is unbiased and, if repeated meny times, is itself of minimum
variance. So the range of the small sample is a poor estimator of the
population from which the sample is drawn (although some statistics still rely
on it). The sample standard deviation (see Section 3.3) is the best (least
biased with the least variance) estimator of the spread of the population we
can have. If we have the data for the whole (large) population then the n — 1
in the denominator of [3.2a-c] is nearly the same as the dencminator n
mentioned for the population variance in Section 3.2. The truth of the use of
n — 1 (Bessel's correction) or n in calculating the standard deviation is
better described in other text books (e.g. Kennedy and Neville, Appendix A,
see bibliography Chapter 1).

There are other MVU estimators for other parsmeters used in statistics.
The discussion in Section 3.5 considers the fact that the arithmetic mean and
standard deviation of the sample wvalues are not the MVU estimators for a
lognormally distributed population, and that the MVU estimators are quite easy
to calculate with modern calculating aids.

11.4 Histograms and “Sturges’ Rule”

It has been pointed out that collecting the data into groups in order to
construct histograms causes degradation of the data, since only two values,
the group limits, are used to describe all the data in the group. If the cell
size or ratio is imprudently selected much valuable information may be
irretrievably lost, and this loss of information may conceal interesting and
important features, especially at the ends of the distribution.

Before the days of computers it was convenient to collect data into such
groups to reduce the amount of calculation to be performed. This is no longer
a valid argument for using histograms in statistical analysis.

There are occasions, particularly when presenting results, when
histograms may be acceptable, or even desirable, and “Sturges’ Rule” can be
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used to determine the “best” number of groups into which data should be
collected for the construction of histograms. Its practical value is doubtful
except as a guide, and is irrelevant if the data are to be plotted
individually as described in Chapters 6 and 7. Sturges’ Rule defines both the
number of groups and the group size. The Rule is generally given as

Number of cells = 1 + 3-322 % logioN [11.1a]

N being the sample size, or in some similar form, depending on the number of
decimal places and the logarithmic base which the user may choose. The general
form is

Number of cells = 1 + 1ln N/ln 2 [11.1b1]

which is suitable for use on calculators and computers, as in the program
“HISTOGRAMS” (i}, The cell size can then be found from

Cell size = Range/Number of cells
Cell size = (Xpax — Xmin)/Number of cells {11.2al

The cell size will rarely be in exact and convenient units, and can be
adjusted within reason. These simple formulae [11.1bl and [11.2al are clearly
for normally distributed data, giving equal cell sizes of, say, 10 with
boundaries at 10, 20, 3¢, 40 and sc on. If the data are lognormally
distributed [11.1a and bl are still valid but [11.2al] becomes

Cell ratio = antilog((log Xmex — lOg ¥min)/Cell Number) {11.2b1
antilog[ (log (¥mex/¥min))/Cell Number ] [11.2¢c]

|

Notice that the cell size has become the cell ratio. Again the cell ratio will
probably not be ideal, that is, a convenient number like J2 to give cell
boundaries at 0-5, 07, 1, 1-414, 2, .... Also notice the need to know whether
the data are normally or lognormally distributed before the table of
frequencies of occurrence for the histogram is drawn up. Or put another way,
ideally you should construct two histograms, using {11.1b] to find the number
of cells and also [11.2al] and [11.2c] to get the cell intervals in arithmetic
and logarithmic terms, and then test both histograms for goodness of fit (to
the respective distributions) before deciding on which 1is the more
appropriate. Two tests are commonly used, the x2 test of goodness of fit and
one of the various versions of the Kolmogorov-Smirnov test, but neither is
described here, since the routines described in Chapters 6 and 7 are superior.
Remember that vour data need to be entered into a computer only once, but once
entered you should apply a statistic which makes optimum use of them.

11.5 NIOSH

NIOSH is not a small town in Wisconsin. It is the National Institute of
Occupational Safety and Health, an American organization based in Cincinnati,
Ohio. One of its responsibilities is “to insure safe and healthful working
environments.” It carries out research and development programmes and
disseminates the results. NIOSH is a rich source of information, including
statistical procedures, for occupational hygienists. Some publications from
NIOSH can be obtained direct free from NIOSH at Robert A. Taft Laboratories,
4676 Columbia Parkway, Cincinnati, OH 45226, but stocks held are usually
small. Two alternative sources of NIOSH publications are:—

1) Superintendent of Documents, US Government Printing Office, (US GPO),

Washington, D.C. 20402. The US GPO requires prepayment or, better, an

account maintained in credit. The GPO takes Visa and Mastercharge

(Access) cards.
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2 National Technical Information Service (NTIS), U.8. Dept. of Commerce,
Springfield, Va. 22161. Again suitable payment with order, an account or credit
cards as above plus American Express can be used for payment.

NTIS have agents in many countries. The UK agent is Microinfo Ltd, PO Box 3,
Alton, Hants., GU34 2PG.

The British Library, Lending Division, Boston Spa, also carry NIOSH books.

11.6 Null Hypothesis

Many statistical tests, such as the F-test and t-test, used in Chapters 8
and 9 are based on the “null hypothesis”. In using this hypothesis it is
always postulated that there is no significant difference between the
distributions being compared. The probability of the actual difference
occurring due to chance alone is calculated, and if this probability is small,
the null hypothesis is rejected, and it is inferred that the difference is
real. Thus the null hypothesis for the F-test postulates that there is no
difference between the variances, i.e. the variance ratio = 1. The probability
of this occurring by chance can be read from the sappropriate statistical
tables, or computed. If F is close to 1 then the probability of this occurring
by chance is high, and the hypothesis (that the variances are such that the
two samples could have come from populations with the same variance) is
accepted.

For the t-test the null hypothesis might be that the mean of the sample
is not different from the mean of some population mean. The statistic t is
calculated from the data. Again the probability of this wvalue of t occurring
is looked up in the t—distribution table or it is calculated, and if the the
probability is high enough, the hypothesis (that there is no significant
difference between the means) is accepted. If t is large and p is small, the
null hypothesis is rejected (the means are significantly different), but it
should be noted that the null hypothesis can never be formally proved to be
correct.

Commonly, but not always, the t—-test is used to test the hypothesis that
the difference between means is zero. But it follows from the fact that the
test can be used to test the mean from the data with some other population (or
sample) mean, these means need not be the same. In this case the null
hypothesis is that the difference between the means is some value other than
zero. This could have been the basis of the t-test to be applied to the means
of the logs of the samplers in Section 8.5 when discussing the case of both
being used as personal samplers. With a priori evidence the null hypothesis
that the ratio of geometric means was not significantly different from 1-30
could have been propogsed and tested, or in the more directly and
computationally convenient form of the program that the difference of the
(natural) logarithmic means was not significantly different from 0-2624.

11.7 Reference

i “HISTOGRAMS”, a demonstration program in Basic which generates random
uniform, normal or lognormal data, using Sturges’ rule to set cell sizes and
cell intervals before collecting the data into frequency of occurrence cells.
The program can also be used for ‘“real” data. From H & H Scientific
Consultants Ltd, P.O. Box MT27, Leeds, LS1i7 8QP.
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12 OCCUPATIONAL HYGIENE STATISTICS GLOSSARY

12.1 Difficult Words in Occupational Hygiene Statistics

Some of the expressions in the boock may be somewhat novel, and this
glossary has been included to clear up any misunderstandings you might have. It
will also cater for the terminology which you will encounter in the second and
subsequent books (as yet unwritten) in this series. The Glossary is taken from a
fuller document(l).

Data Set : Numerical results from two or more unrelated measurements made at
the workplace.

Distribution : The arrangement of a data set in ascending order of magnitude,
usually done because no one can think of anything better to do with it.

Lognormal Distribution : Statistical distribution universally ascribed to any
distribution of occupational hygiene data, irrespective of the fact that it can never
be shown statistically tha! the results are lognormally distributed at any sane
level of confidence (see(2)). Any high GSDs are best used sparingly to penic
management and ensure employment for another year.

Statistically Insignificant : Describes any outcome of human exposure to
harmful agents, up to, and including, loss of taste, hearing, sight, sense.of smell
or any parenchyma (after{3h.,

Statistically Significant : Describes the outcome a study was designed to
producetd),

Statistical Artefact : Data set showing that all the remedial measures
implemented to improve working conditions have in fact made them worse (after(3)).

Null Hypothesis : (1> The presumption that hygienists don't need to apply
statistics to their data.
(2) The proposition that hygienists haven't sufficient data for statistical

analysis.
(3> Conclusion you do not want to reach, but constantly try to attain(3).

Type I Error : Application of a statistical test without having properly
formulated the Null Hypothesis(3),

Type II Error : Believing you understand Type I Error(3},

Homogeneous Group : Arbitrary or biased (any old) collection of random
individuals.

Random : Biased.
Biased : Distorted—usually arises from neglecting a factor.

Factor : Useful to apply to data, like poultices to boils. (Makes them better
if they are poorly, unless you pick at them).
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Correlate : As in ‘“correlates with"; suspect either a teutology or a non
gequitur when you see this in a report.

Trend Analysis : Immortalized by one-time US Defense Secretary Harold Brown,
when he commented on the failure of two submarine test firings of the Tomahawk
cruise missile “Failure in the past increases the probability of success in the
future”.

12.2 References

1 Clari Fie and Ed U. Kate, (unpublished work — rejected by every Health &
Safety publication) “A Glossary of Occupational Hygiene Terms”.

2 Mage, D.T., (1985) “The Procrustean Fit — A Useful Statistical Tool for
Decision Making”, Journal of Irreproducible Results, v.30, no.4, p. 32.

3 1Iles, R.L., (1984> “A Dictionary of Pharmaceutical Research, Comments and
Excerpts”, JIR, v.29, no.3, pp. 14-15.
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